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Abstract:  
The development of the connection between ultrafast laser dynamics and solitary waves concepts 
is presented, with an attempt to emphasize on important research milestones and conceptual 
advances. At various stages, the concepts of conventional and dissipative solitons are found to 
echo, oppose, or complement each other. The pivotal role of fiber lasers is highlighted, which 
multiplied the investigation of ultrafast laser dynamics since the 90s, and lead to the widespread 
usage of dissipative soliton concepts that were instrumental in understanding original dynamical 
regimes and related optical waveforms, such as the generation of bright solitons in the normal 
dispersion regime and the self-assembly of optical soliton molecules within laser cavities.  
 
 
1. Introduction -- solitons entering laser physics 
The first experimental evidence of passive laser mode locking by DeMaria et al. in 1966 [1] opened 
a new avenue for the generation of short optical pulses. Designed as an analog of the microwave 
regenerative pulse emitter, the laser architecture incorporated a fast saturable absorber dye 
material. It was considered as the most promising strategy to progress toward sub-picosecond 
optical pulse generation. By 1975, when H. Haus published his seminal article “Theory of mode 
locking with a fast saturable absorber,” it was affirmed that a considerable amount of theoretical 
and experimental work had already been done on mode locking by a saturable absorber [2]. 
Nonetheless, the proposed mode locking model was exclusively hinged on dissipative effects: gain 
with saturation, spectral filtering, and saturable absorption1. It adopted a perturbative approach, 
considering relatively small pulse changes per cavity roundtrip, and completely disregarded the 
role of the Kerr nonlinearity and that of chromatic dispersion. As a matter of fact, the theoretical 
prediction a couple of years earlier of the solitary wave propagation in optical fibers by Hasegawa 
and Tappert [3] was overlooked as fitting another area of nonlinear science. Indeed, in the absence 
of convenient infrared pulse sources required to reach the anomalous dispersion domain of silica, 
where the formation of bright solitons would be observed, and the lack of reliable single mode 
silica fibers, optical soliton observations and their applicative prospects in optical communications 
remained uncertain projections2 [4]. Nevertheless, from the mid 70’s, while succeeding in reaching 
sub-picosecond mode-locked pulse durations, laser physicists were confronted with the impact of 
chromatic dispersion and self-phase modulation (SPM). In the quest of ultrashort pulses, the 
influence of chromatic dispersion was first considered as a major nuisance, entailing the 
subsequent development of dispersion compensation schemes. However, if an optical pulse 
propagates in the anomalous dispersion regime, the combined effects of SPM and dispersion can 
lead to its temporal compression, which potentially benefits the mode locking process.  

 
1 The 1975 ultrafast laser model can thus be considered as an early model for dissipative optical solitons.  
2 H. Haus readily entered the topic of soliton propagation in the 80’s and pioneered soliton-related investigations in 
both optical communication and ultrafast lasers arenas.  



Following Hasegawa and Tappert, the propagation of optical pulses in dielectric waveguides, in 
presence of chromatic dispersion and Kerr nonlinearity, is modeled by the nonlinear Schrödinger 
(NLS) equation such as [3]:  
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where 𝛽# is the second-order chromatic dispersion coefficient and 𝛾 is the effective nonlinear 
coefficient. 𝜓 is a scalar function that represents the envelope of the electric field (in √𝑊unit) as 
a function of the local time 𝑡 in the moving pulse frame and the propagation distance 𝑧. In the 
present model, the propagation medium is assumed uniform, lossless, and the vector nature of the 
electric field is omitted, noting that subsequent extensions beyond these assumptions have led 
since to a considerable research activity [5-8]. Equation (1) is integrable. In the anomalous 
dispersion case (𝛽# < 0), with a focusing nonlinearity (𝛾 > 0), Eq.(1) admits a bright stationary 
solitary wave, namely the fundamental (N=1) soliton, which is characterized in the time domain 
by a hyperbolic-secant profile and a constant phase profile, i.e., chirp-free, such as:  
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where 𝑇, is the pulse duration parameter, which is a free parameter in the equation. The 
fundamental soliton energy is calculated to be:  
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Equation (2) and its consequence Eqn. (3) highlight the existence of a family of fundamental 
solitons for a given propagation medium, where short solitons carry more energy than long-
duration ones. Taking a standard telecom single-mode optical fiber such as SMF-28 and an 
ultrashort pulse duration parameter of 200 fs yields a fundamental soliton energy around 100 pJ. 
Equation (1) also admits higher-order soliton solutions, characterized by an integer N>1, which 
can be excited by launching an initial condition such as:  
 
𝜓%(𝑧 = 0, 𝑡) = 𝑁	𝜓%&'(𝑧 = 0, 𝑡),        (4) 
 
which means the above excitation requires an energy 𝑁#times that of the fundamental soliton. 
Higher-order solitons (N>1), whose spectral and temporal waveform oscillate periodically, can be 
viewed as solutions where the chromatic dispersion and the Kerr nonlinearity balance on average.  
 
In 1980, progress in both infrared ultrafast laser sources and single-mode optical fibers allowed 
Mollenauer, Stolen, and Gordon to report the first experimental observation of the optical soliton 
propagation regime [9]. This soliton experiment employed a cryogenically cooled color-center 
laser tunable in the 1.35-1.75 µm spectral region. By launching 7-ps pulses into a 700-m long 
single mode fiber, the physicists obtained a clear signature of fundamental as well as higher-order 
soliton propagation. Such experimental milestone provided incentive to Mollenauer and Stolen for 
a subsequent experiment, where they incorporated a piece of optical fiber into the feedback loop 
of the color-center laser cavity, as sketched in Fig. 1(a). Whereas the color-center laser was then 
offering a path to the generation of picosecond pulses in the near infrared, it suffered complicated 
adjustments and maintenance, and was prone to unstable mode locking operation. By adding the 
nonlinear fiber feedback loop, the experimentalists showed that the mode locked regime could be 
stabilized with a pulse duration fixed by the fiber length: an N=2 high-order soliton propagation 



took place when the roundtrip fiber length was equal to the soliton period. Thus, the shorter the 
fiber, the shorter the laser pulse, within practical limits – mode locking instabilities appeared for 
the shortest sub-picosecond pulse durations reported in the experiment. By demonstrating that 
solitonic pulse shaping assisted laser mode locking in such a decisive way, the soliton laser 
brilliantly entered the scene of ultrafast lasers [10]. The soliton laser was at the origin of multiple 
laser experiments that used coupled cavities to enable what was termed “additive-pulse mode 
locking”, a strategy that considerably eased the generation of shorter pulses [11]. In other words, 
the effectiveness of nonlinear interferences to create a virtual ultrafast saturable absorber was also 
established. In a virtual saturable absorber, the phase bias of the nonlinear interferences can be 
generally adjusted by the experimenter, which procures a useful degree of freedom on the resulting 
nonlinear transfer function to search the mode locking operation. As a final highlight, the 1984 
article from Mollenauer and Stolen predicted that, when a suitable fiber gain medium would 
become available, the soliton laser would probably take the form of a single loop of fiber closed 
upon itself. The simplicity and low cost of such devices would make them most attractive [9].  
 
Despite the first fiber waveguide laser experiment took place in 1961 [12], the fiber laser 
revolution anticipated by Mollenauer and Stolen still had to wait till the beginning of the 90’s, with 
the advent of the erbium-doped fiber amplifier that transformed the optical communication 
industry and generalized the use of fiber-integrated components [13]. Meanwhile, decisive 
progress in bulk ultrafast laser sources were made in the 1980’s. Mode-locked dye lasers met their 
peak in the mid 80’s, after the demonstration that the normal chromatic dispersion of the laser 
cavity could be efficiently compensated by an intracavity prism sequence, yielding pulses as short 
as 27 fs by the end of 1984 [14]. In parallel, the development of the titanium-sapphire (Ti:S) laser 
from 1982 was gaining momentum as a reliable solid-state broadband laser source [15]. By using 
intracavity prims, passively mode locked Ti:S generated sub-100 fs pulse duration in 1991 [16]. 
From that date, the usage of the dye lasers, which suffer from a delicate maintenance and generate 
toxic waste, quickly declined. The possibility to achieve mode locking operation of the Ti:S laser 
in the absence of specific saturable absorber material, initially dubbed as “magic mode locking”, 
was subsequently understood as arising from the nonlinear Kerr lensing effect inside the crystal, 
which is a spatial equivalent of the virtual saturable absorber effect introduced above. In the wake 
of ultrafast dye lasers, most mode-locked Ti:S lasers would be operated in a slightly anomalous 
path-averaged dispersion regime, to fit a “solitonic” operation characterized by a nearly chirp-free 
hyperbolic-secant pulse profile. It is worthy to mention that the perturbative modeling approach, 
considering small pulse changes per cavity roundtrip, would often work well to model dye and 
Ti:S mode locked lasers, which had de facto become the earliest practical soliton lasers. Therefore, 
beyond the fundamental (N=1) soliton propagation that was the leitmotiv for the laser cavity 
settings, researchers reported N=2 and N=3 higher-order soliton generation, characterized by a 
soliton period that was up to three orders of magnitude larger than the cavity length [17-19]. This  
further confirmed the relevance of an average soliton propagation model for these ultrafast lasers.  
 
Enabled by high-quality single-mode erbium-doped fibers (EDF) and by efficient laser diode 
pumping in the near infrared, both available from the end of the 80s [20-22], the development of 
mode-locked fiber lasers literally exploded in the early 90s [23-26]. By operating around the 1.5-
µm spectral region, where standard silica fibers have anomalous dispersion, ultrafast EDF lasers 
immediately prompted soliton dynamics inquiry. Let us point out major differences between fiber 
lasers and bulk lasers such as Ti:S and dye lasers. In fiber lasers, the pulse propagates within, 
typically, meters of dense media every cavity roundtrip in a confined propagation mode. In a 
passive fiber, Kerr nonlinearity and chromatic dispersion constitute the major propagation effects 
for short pulses, which indeed reconnects to the soliton dynamics. Besides, a meter long EDF can 
provide high gain, which enables to run ultrafast fiber lasers with significant cavity losses 



cumulated from the laser output coupler and other fiber integrated components, as well as from 
the ultrafast saturable absorber mechanism. Consequently, the physical effects acting over a single 
roundtrip cannot generally be taken as perturbative. Considering soliton propagation in fiber lasers, 
the substantial pulse reshaping along the optical fibers generates dispersive waves, which can 
interfere constructively over successive cavity roundtrip with specific spectral components of the 
soliton, leading to an enhanced scattering of radiation sidebands: this landmark feature of soliton 
fiber lasers is recalled and explicated by J.R. Taylor in the present special issue [27].  
 
 

 
Figure 1. Illustration of the development of mode-locked laser architectures based on soliton and 
dissipative soliton propagation. (a) The 1984 soliton laser (simplified). M: mirror; L: lens; PM-
SMF: polarization-maintaining single mode fiber: Sepa: output coupler mirror. (b) Typical figure-
of-eight all-fiber laser based on a nonlinear amplifying loop mirror (NALM). DF: doped fiber; 
SMF: single-mode fiber; DL: diode laser; WDM: wavelength division multiplexer. (c) Typical all-
fiber ring laser mode locked through the nonlinear polarization evolution (NPE) mechanism. PC: 
polarizer controller. (d) Ytterbium-doped fiber (YDF) laser operating in the all-normal dispersion 
regime owing to a combination of NPE and spectral filtering. The latter are implemented and 
adjusted owing to an intracavity open-air section. PBS: polarizing beam splitter; Coll: collimating 
lens.  
 
 
The availability of telecom-grade fiber integrated components allowed to test a wide variety of 
ultrafast fiber laser architectures at shrinking costs. In particular, it was found that fiber laser 
architectures could easily incorporate various additive-pulse mode locking schemes, or 
equivalently, several methods enabling an ultrafast virtual saturable absorber effect to take place. 
For instance, various versions of nonlinear optical loop mirrors – extensions of the Sagnac 
interferometer – can be implemented. Figure 1(b) displays a fiber laser architecture where the loop 
mirror includes an optical amplifier, constituting a nonlinear amplifying loop mirror (NALM) 
[24,28]. In subsequent versions, by employing polarization-maintaining (PM) fibers, the improved 
environmental stability of fiber lasers mode locked through nonlinear loop mirrors was conducive 
to the marketing of rugged turnkey ultrafast fiber lasers [29].  
 



A recurrent and striking observation in ultrafast EDF lasers is their ability to self-generate multiple 
pulses per cavity roundtrip. This was readily explained by the limitation imposed by the 
fundamental soliton energy [30]. In a standard telecom fiber (SMF), the (N=1) soliton energy is 
typically in the range 10-100 pJ for a FWHM pulse duration spanning from 1 ps to 100 fs. For 
instance, a 50 pJ soliton traveling round a 10-meter-long fiber cavity would make an average 
intracavity power of 1 mW. Considering a pump laser diode routinely delivering over 100 mW 
coupled to an efficient intracavity EDF amplifier, the soliton energy limitation soon comes into 
play. Thus, depending on the mode locking settings, up to tens of coexisting soliton pulses could 
be observed in early ultrafast EDF laser experiments. Whereas the soliton energy quantization 
effect provided a convincing explanation, which definitely rooted solitons into ultrafast fiber laser 
dynamics, several puzzling questions rose in comparison to the original 1984 soliton laser 
experiment. Firstly, high-order solitons have been reluctant to manifest in ultrafast fiber lasers. 
High-order solitons could have logically constituted a dynamical possibility when the stored cavity 
energy exceeded that of the fundamental soliton, but instead, the observation repeatedly confirmed 
the generation of multiple N=1 soliton pulses. The latter appeared when the pump power was 
increased beyond a certain bifurcation threshold, triggering a multi-pulsing instability [31]. 
Secondly, the soliton pulse duration was not obviously related to the cavity length. In the 1984 
experiment, the roundtrip length of the fiber feedback loop needed to be equal to the soliton period 
owing to the high-order soliton propagation, whereas this condition is obviously lifted for N=1 
solitons propagating in ultrafast fiber lasers. There are several other remarkable features with 
solitons generated by ultrafast fiber lasers. Let us recall that the fundamental solitons of the 
nonlinear Schrödinger (NLS) equation belong to a family of solutions, where the soliton pulse 
duration is not fixed a priori. So, if multiple laser pulses are NLS fundamental solitons, why are 
they identical – same duration, same energy – in the laser cavity, in contrast to what is observed in 
passive fiber cavities [32]? Why do they tend to form stationary optical patterns in laser 
experiments? Why do they often feature a residual frequency chirping? These observations lead to 
the conclusion that the understanding of soliton fiber lasers required to go beyond the NLS model.  
 
The need to surpass the conventional soliton model was also triggered by the development of fiber 
laser cavities employing dispersion management, which generate stretched pulses whose dynamics 
is characterized by a sustained temporal breathing of the intracavity pulses [33]. Technically, 
dispersion management in erbium-doped fiber lasers came up quite naturally. Indeed, to increase 
the energy transfer efficiency from the pump to the gain medium, doped fibers are routinely 
designed with a reduced core diameter. This results in an increased waveguide dispersion, shifting 
the propagation regime within the doped fiber well into the normal dispersion regime. Yet, the 
implementation of a large dispersion management effect inside a laser was conceptually bold, since 
it departed from the initial idea of keeping the pulse changes per roundtrip small, as embodied by 
the early master equations for mode locking, see Section 2. A typical dispersion-managed (DM) 
fiber ring laser architecture is shown in Fig. 1(c). Within a cavity roundtrip, the laser pulse 
propagates successively through a normally dispersive doped fiber and an anomalously dispersive 
passive fiber, which entails pulse stretching and compression twice per roundtrip. Such fiber ring 
laser architecture is also conducive to the implementation of a virtual saturable absorber effect 
based on the nonlinear polarization evolution (NPE), which takes place in the fibers, followed by 
polarization discrimination through a polarizing beam splitter [25].  
 
A DM laser architecture featuring a large stretching factor means that most of the time, the pulse 
peak intensity is considerably reduced, therefore limiting the accumulated nonlinearity. This way, 
a pulse of larger energy can be supported without suffering breakup. The DM laser architecture 
succeeded in enhancing the pulse energy by at least one order of magnitude compared to the 
previous soliton fiber lasers [33,34]. This was also interpreted in the frame of the dispersion-



managed soliton concept, which was simultaneously developed to improve optical transmission 
lines from the mid 90s’ [35]. Therefore, stretched pulse dynamics allowed mode locked fiber laser 
oscillators to step into the nanojoule pulse energy domain, which accelerated the transfer of 
technology to place compact, energy-efficient, femtosecond fiber laser devices on the market from 
1995 [36]. The concept was extended to other laser wavelengths, for instance by using intracavity 
compression gratings when anomalous dispersion fibers were not available [37].  
 
2. Toward dissipative solitons for ultrafast lasers 
In the wake of the 1984 soliton laser experiment, investigations with coupled-cavity mode-locked 
lasers hinted that stable mode locking could still be reached in the normal dispersion regime of the 
intracavity fiber feedback loop, ruling out solitonic pulse shaping [38]. In the same year as the 
soliton laser experiment, Martinez, Fork, and Gordon proposed an extension of Haus’s 1975 mode-
locked laser model, with the inclusion of self-phase modulation and group-velocity dispersion 
effects [39]. They analytically predicted chirped hyperbolic-secant pulse solutions, including in 
the normal dispersion regime, even though the stability of these solutions was not examined. In 
1991, Haus et al. performed a major overhaul of the 1975 model, leading to a new master equation 
for mode locking [40]. In the steady state, this master equation can be written as:  
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where 𝛿 < 0 represents the cavity linear loss; x and 𝜑, linear phase shifts; 𝑔 > 0, the gain 
coefficient; Ω3 the gain bandwidth; L is the cavity length. The coefficient 𝜀 > 0	represents, at the 
cubic order, the nonlinear effect of the saturable absorber that promotes mode locking over 
continuous-wave operation. As in Eqn. (1), 𝛽# and 𝛾 represent the chromatic dispersion and the 
effective nonlinearity coefficients, respectively.  
 
Solving Eqn. (5) confirmed the existence of pulse solutions in the normal dispersion regime. As a 
central feature, laser pulse solutions in the normal dispersion regime always require frequency 
chirping. The authors explained the existence of stable laser pulses within the normal dispersion 
regime as follows. Propagating in the positive group-velocity dispersion (GVD) regime, the pulse 
stretches temporally and acquires a large frequency chirp. When the laser gain is applied to the 
chirped pulse, the limited gain bandwidth turns out to shorten the pulse as it shaves off the high 
and low frequency pulse wings. In the temporal domain, the pulse is kept in balance by a 
lengthening coming from the positive GVD. In the optical spectral domain, SPM compensates the 
spectral narrowing resulting from gain dispersion [40]. Within these few lines, the key points to 
establish the concept of a dissipative optical soliton are set: the notion of a complex balance where 
dissipation plays a crucial role is highlighted, which combines with chromatic dispersion and Kerr 
nonlinearity to enable new types of solitary wave solutions [41,42].  
 
Subsequent theoretical investigations confirmed the profusion of solitary waves in the normal 
dispersion regime, such as in the frame of the complex cubic-quintic Ginzburg-Landau equation 
(CGLE) [43], which is exposed below. These findings were strongly echoed a decade later, with 
thorough experimental and numerical investigations of dissipative solitons in all-normal dispersion 
fiber lasers, where the needed pass-band effect was purposedly exacerbated by a lumped spectral 
filter, emphasizing on the energy scalability of the resulting highly chirped pulses [44-47]. The 
ytterbium-doped fiber (YDF) laser, which operates in the 1-µm band where silica procures normal 
dispersion, has been instrumental in these investigations. In the laser cavity, the necessary balance 
between the above physical effects is fulfilled over a cavity roundtrip, as constitutive propagation 
effects take place sequentially. Exploring dissipative solitons in all-normal dispersion helped to 



design higher-energy mode locked lasers. This endeavor saw the consecration of the ytterbium-
doped fiber laser as the most suitable fiber laser platform for energy scaling so far. Indeed, the 
YDF amplifier features high gain, low quantum defect, and is therefore highly energy efficient. A 
typical all-normal YDF laser architecture is sketched on Fig. 1(d) [44]. It features a double-clad 
YDF, allowing the coupling of a multi-watt pumping power, as well as an open-air section to 
precisely control the necessary spectral filtering and NPE mode locking in a compact setting. 
Further energy scaling of YDF lasers operating in the all-normal dispersion regime involved the 
use of low-nonlinearity large-mode-area (LMA) fibers, reaching the microjoule level from a single 
laser oscillator [48]. Such energy level, associated with an ultrashort pulse duration, is a key 
enabler for industrial applications such as precision micromachining, medical surgery, integrated-
circuit package cutting, etc.  
 
We can draw a parallel between promoting highly chirped dissipative solitons in fiber lasers for 
energy scaling and the strategy of chirped-pulse amplification (CPA), which was pioneered in the 
mid-80’s by Strickland and Mourou [49], the main difference being, in the present case, its 
implementation within laser oscillators. Fiber laser architectures have been able to incorporate 
modern fiber CPA concepts in a self-consistent way, such as with the self-similar evolution of 
parabolic pulses [50,51].  
 
To establish the general concept of dissipative solitons for ultrashort laser pulses, the stability of 
the pulse solutions under perturbations and their behaviors during collisions needed to be 
investigated, in order to highlight the relevance of such a new solitary wave concept. Theoretical 
and numerical investigations started in the early 90’s and demonstrated that the solitary wave 
solutions of non-integrable dissipative systems displayed remarkable properties that could find 
immediate applications in multiple areas in physics and beyond, finally leading to the wide 
acceptance of the dissipative soliton terminology at the beginning of the new millennium [52-56].  
 
Besides the existence of stable bright laser pulses in the normal dispersion regime discussed above, 
peculiar features of optical pulses generated by laser cavities in the anomalous dispersion regime 
cannot be explained in the frame of conventional solitons. We already mentioned the question 
about understanding the generation of multiple identical soliton pulses. It can be loosely answered 
by stating that the pulse duration is determined by the available gain bandwidth. Given the fiber 
dispersion and nonlinearity parameters, knowing the pulse duration then fixes the soliton energy. 
However, playing with the accessible dissipative cavity parameters such as linear and nonlinear 
loss, spectral filtering, etc., laser physicists observed that, for a given anomalous dispersion, they 
could generate chirped pulses spanning over a wide range of pulse duration. Again, the key features 
of the stable pulse dynamics can only be determined once the dissipative effects are appropriately 
taken into account, which calls for a unified soliton picture for active optical systems, namely, the 
dissipative soliton.  
 
3. Dissipative soliton central features 
The framework of dissipative soliton cannot operate without the notion of a dynamical attractor. 
If we contemplate the propagation of laser pulses in a stationary mode locked operation, we realize 
the extraordinary stability of these solitary waves that can travel the equivalent of billions of 
kilometers in dense media without being overly affected by various noise sources, a feat 
inconceivable for NLS solitons. This is due to a restoring “force” that pulls backs the laser pulse 
to an attracting state, which is enabled by dissipation. Precisely, a dynamical attractor of stable 
focus type ensures a fixed pulse profile endowed with robustness and stability. Such attractor 
results from the composite balance involving dispersive and dissipative propagation effects, and 
defines the dissipative soliton. In essence, all mode locked laser pulses are dissipative solitons. 



Dissipative solitons can be defined as localized formations of the electromagnetic field that are 
balanced through an energy exchange with the environment in presence of nonlinearity, dispersion 
and/or diffraction [56]. By allowing a large freedom in handling the balance between the major 
physical effects at play within the laser cavity, the dissipative soliton concept for ultrafast lasers 
opens up original dynamical possibilities, as reflected by the diversity of laser architectures and 
cavity parameter ranges explored, especially since the beginning of this millennium [56-60].  
 
Whereas a stable focus attractor provides a fixed output pulse profile – in both temporal and 
spectral domains, it is also linked to the existence, at every single location inside the laser cavity, 
of a fixed attracting profile – namely a local attracting state, which spatially evolves along the 
cavity according to the propagation dynamics. In other words, in experiments as well as in non-
uniform propagation models, the attracting state is always multidimensional. Since the 
experimental characterization is generally conducted from a single laser output, it misses this 
important feature that can be investigated through numerical simulations. The existence of an 
attracting state easily explains why multiple pulses traveling round the laser cavity will generally 
adopt an identical profile, since all of them will be precisely carved by the same attractor. A strong 
focus attractor makes an efficient noise filter, bringing stability to the pulsed regime. It also brings 
robustness, which means that a small amount of system parameter change is tolerated and will not 
disrupt the pulsed laser operation. This way, even without an active stabilization, mode locked 
lasers can feature low noise.  
 
The pulse profile of a dissipative soliton is found to vary widely according to the system 
parameters, spanning for instance from a hyperbolic-secant type to gaussian and even flat-top type 
profiles. Such diversity can be conveniently explored numerically within distributed master 
equations. Although the latter do not capture the intracavity dynamics, they are useful in bringing 
insight about the influence of the major physical effects involved in the laser cavity. This approach, 
initiated in 1975, was further highlighted by the relevance of Ginzburg-Landau equations –  with 
an emphasis on the complex cubic-quintic Ginzburg-Landau equation (CGLE) – to model 
universal ultrafast laser dynamics [52-56]. In its standard form, the CGLE can be built by adding 
the following dissipative terms to the NLS equation: linear loss, nonlinear gain, saturation of the 
nonlinear gain, and spectral filtering. These dissipative terms model the combined effects of the 
laser gain and the saturable absorber assuming an instantaneous response. However, the dissipative 
terms are not perturbative to the NLS. They are allowed to acquire a significant magnitude, which 
is why original pulse solutions can be found in domains precluded by the NLS – for instance bright 
solitons in the normal dispersion regime.  
 
The CGLE propagation model reads, for a normalized field amplitude 𝜓:  
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The left-hand side of Eqn.(6) represents the terms of the NLS equation, where D is the dispersion 
parameter (whose sign is opposite to the group-velocity dispersion parameter 𝛽#, i.e., for normal 
chromatic dispersion, 𝐷 < 0 while 𝛽# > 0). The right-hand side contains, in essence, all the 
dissipative physical effects required in a mode locked laser system. In addition to the cavity loss 
(𝛿 < 0) and nonlinear gain (𝜀 > 0) terms present in the 1991 Haus model, the above CGLE 
features a quintic saturation of the nonlinear gain (𝜇 < 0) that turns out to be essential for the 
stability of the pulse solutions. Indeed, in the absence of the latter, the cubic gain term may run 
away, generating a non-physical blowup of the pulse solution [31,43]. Likewise in Eqn. (5), the 
CGLE features spectral filtering (𝛽 > 0), which is important to stabilize the pulse solution in the 
frequency domain, taking into account the gain bandwidth as well as other intracavity filtering 



elements. Finally, the last term is a quintic correction to the nonlinear refractive index. Whereas 
such a term is usually irrelevant in the case of silica fibers, it may come up from the mathematical 
averaging procedure that distributes specific propagation effects over the whole cavity roundtrip 
[53]. It should also be emphasized that the CGLE is not integrable. Whereas for some parameters 
sets, analytical solutions can be obtained, the general exploration of the CGLE solutions remains 
essentially numerical.  
 
Figure 2 illustrates the diversity of stable pulse profiles found upon parameter change, here in the 
normal dispersion regime. By varying the nonlinear gain parameter 𝜀, the pulse amplitude can get 
close to either a hyperbolic-secant, a gaussian, or a flat-top profile. As anticipated from the above 
discussions, all pulses bear a significant frequency chirping. This is a general feature of stationary 
dissipative solitons – in contrast to the fundamental NLS soliton endowed with a constant 
nonlinear phase shift across its temporal profile – which is understood after recalling that the 
electromagnetic energy flows through phase gradients. Due to the nonlinear dissipation terms, 
some parts of the pulse will be amplified during propagation (for instance, the central pulse part), 
whereas others (for instance, pulse tails) will be attenuated. To maintain a stationary pulse profile, 
the dissipative soliton requires an internal energy redistribution among its various pulse parts, 
which is enabled by nonuniform phase gradients, hence the frequency chirping. Whereas this 
mechanism fits perfectly the explanation provided earlier for the existence of stable bright 
dissipative solitons in the normal dispersion regime, it is also acting in the anomalous dispersion 
regime. The frequency chirping in the anomalous dispersion regime has generally a much lower 
magnitude than in the normal dispersion regime. Nevertheless, it is possible to find domains of 
laser cavity parameters with anomalous dispersion where dissipative solitons feature an important 
frequency chirping, such as in the so-called dissipative soliton resonance [61,62]. Again, the 
practical benefit of these highly chirped pulse solution resides in their superior energy scaling.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Stable pulse solutions of the CGLE obtained numerically using parameters as indicated, 
in the normal dispersion regime. (a) Amplitude profile. (b) Phase profile. The three pulse profiles 
are obtained by varying the nonlinear gain parameter 𝜀. After [43].  
 
Since dissipative solitons exist for both anomalous and normal dispersion regimes without known 
theoretical limitations, we can find dissipative solitons in the absence of linear dispersion. This is 
practically the case when the dispersion length is much larger than the cavity length, provided that 
the dissipative effects are important: this way, the dispersive effects are not cumulated over 
successive roundtrips [63]. Such situation is also experimentally met in fiber laser cavities 
endowed with precise dispersion compensation, provided that the length of the dispersion map 



remains shorter than the dispersion length so that the dynamics experiences the average dispersion 
[64]. In general, the dissipative soliton paradigm allows to considerably relax the constraints on 
chromatic dispersion. It is likely to blend with the recently investigated quartic soliton lasers where 
an original pulse shaping arises from the balance between fourth-order dispersion and the Kerr 
nonlinearity [65]. The flexibility of the dissipative soliton workbench can be extrapolated to the 
domain of transverse spatial propagation [66,67]. In multimode fiber lasers, some amount of 
intermodal dispersion can be balanced, with the help of spatial filtering, enabling spatiotemporal 
mode locking, which has become an important research topic in recent years [68-73].  
 
4. Dissipative solitons in the light of complexity 
 
4.1 Dissipative soliton molecules 
The efficient tool of the dissipative soliton attractor can operate at a larger physical scale, such as 
for a set of interacting soliton pulses. In a laser cavity, multiple solitons always interact: traveling 
within a bounded system, they virtually have an infinite time to reveal even faint interaction 
processes. In the simplest case of two laser solitons interacting through their overlapped pulse tails, 
such direct interaction can lead to a stable equilibrium where the relative timing of the two pulses 
will converge to a fixed separation, while their relative phases will self-lock at a fixed phase 
difference. In this example, the features of the resulting soliton bound state are determined by a 
multisoliton attractor. The basin of attraction corresponds to the range of the two-pulse initial 
conditions leading to the formation of the soliton bound state. The distributed CGLE model has 
proved to be particularly useful to reveal multisoliton attractors [61,62], which frequently manifest 
within ultrafast lasers [56].  
 
It is important to state that these dissipative multiple-soliton bound states have no direct 
relationship with the high-order solitons that can propagate in passive optical fibers modeled by 
the NLS equation. For high-order NLS solitons, the spectral and temporal profiles strongly 
oscillate, noting also that such oscillation is destabilized by additional propagation effects such as 
Raman scattering or third-order dispersion, possibly leading to a breakup of the high-order soliton 
[76]. Whereas, in the frame of the homogeneous NLS equation, optical solitons also interact 
through their tails, multiple solitons do not reach a stable equilibrium pattern [77]. In contrast, 
dissipative soliton bound states can be perfectly stable, which is reflected in experiments: the 
prominent signature of a stationary bound state of two temporal solitons is the presence, within the 
measured average optical spectrum, of periodic fringes featuring a high contrast [78-80]. Recently, 
the relative timing jitter between two self-locked pulses was measured down to the attosecond 
level [81]. Since they display several striking analogies with matter molecules, the bound states of 
laser pulses have been called optical soliton molecules, a now widely adopted terminology that 
originated from the study of soliton propagation in dispersion-managed fiber systems [82]. Figures 
3 (a-d) present early experimental confirmations of soliton molecules in ultrafast fiber lasers, 
obtained through the combination of optical autocorrelation and optical spectral measurements, 
noting that the few-picosecond internal structure of the soliton molecule could not be directly 
recorded by a photodiode. Figures 3 (e,f) show numerical simulations of the intracavity dynamics 
of a soliton molecule in the stationary regime, which means that, following a transition time, the 
intracavity pulse evolution has become identical roundtrip after roundtrip. within a dispersion-
managed laser in both path-averaged chromatic dispersion regimes. Whereas each dissipative 
soliton can undergo an important evolution within the cavity roundtrip, the soliton molecule 
appears like a frozen entity, where the internal separation and phase difference between the two 
solitons remains practically constant. This arises in part due to the relatively weak interaction 
between two pulses separated by a few pulse widths. Nevertheless, the stable stationary soliton 
molecule is perfectly maintained in the situation of a major pulse stretching and compression 



displayed in Fig. 3(e), where both pulses strongly overlap in a significant portion of the laser cavity. 
The two-pulse entity is strongly stabilized by a soliton molecule attractor. As a matter of fact, to 
demonstrate such property numerically requires to run the propagation model over thousands of 
cavity roundtrip, the scale at which the interactions among pulses are clearly revealed. Figs. 3(e,f) 
illustrate the major difference between the dynamics of soliton molecules and that of higher-order 
NLS solitons [5]. The topic of dissipative optical soliton molecules has driven considerable 
fundamental interest, with investigations conducted within various optical platforms, from 
ultrafast lasers to microresonators [57,83,84]. Potential applications of soliton molecules include 
multi-level data encoding and processing [85-87].  
 
 
4.2 Pulsating dissipative solitons  
Let us first come back to the situation of a single, initially stationary, dissipative soliton pulse. 
When the control parameters of the ultrafast laser – such as pump power, nonlinear losses, 
dispersion, etc. – are altered, a stable focus attractor can be subjected to bifurcations. The Hopf 
bifurcation is a ubiquitous bifurcation that transforms a single focus attractor into a limit cycle. 
Subsequent to a Hopf bifurcation, the dissipative soliton pulse will oscillate in time, with 
oscillation characteristics solely determined by the system parameters. Accordingly, in a 
distributed propagation model such as the CGLE, the pulse profile oscillates with a given period 
in the spatial propagation coordinate. If we now consider the ultrashort pulse dynamics within a 
realistic laser cavity model – i.e., a parameter-managed propagation model, then at each location 
of the laser cavity, the pulse profile will oscillate from one roundtrip to the next. Therefore, the 
cavity periodicity implies the observation of a discrete oscillation. This pulse oscillation can be N-
periodic with respect to the cavity roundtrip – a feature called entrainment, which means here a 
self-synchronization of the pulsating dynamics to harmonics of the cavity fundamental frequency 
[88-91]. As a matter of fact, the period-2 pulsation is the most generic pulsation, which can be 
followed by a cascade of period doubling bifurcations when the system parameters are moved 
further and lead to chaotic dynamics. Another frequent observation is that the initial bifurcation 
leads to a long period pulsation (large N value), which is incommensurate with the cavity roundtrip 
in the absence of entrainment. It is even possible to combine long and short period pulsations, 
among many other possibilities, as the bifurcation options for nonlinear systems having an infinite 
number of degrees of freedom appear limitless [88,92]. Let us now ask the question: is there an 
immediate relationship between pulsating dissipative solitons and higher-order NLS soliton 
dynamics? The negative answer is supported by the existence of dissipation-enabled attractors. 
The asymptotic dissipative soliton dynamics does not depend on the initial waveform conditions 
when the latter belong to the basin of attraction of the attractor, in contrast to NLS soliton dynamics 
that are particularly sensitive to the initial field characteristics. Nevertheless, some connection 
between pulsating ultrafast fiber laser dynamics and high-order solitons dynamics can be found. 
Indeed, both dynamics classically originate from an excess of self-phase modulation taking place 
in a propagation fiber, which in the fiber laser system triggers a bifurcation being typically, but not 
exclusively, a period doubling bifurcation [91].  



 
 
Figure 3. Optical soliton molecules in ultrafast fiber lasers. Early experimental reports of (a,b) 
out-of-phase and (c,d) quadrature phase-locked soliton pair molecules. (a) Background-free optical 
autocorrelation ; (b) Optical spectrum (log scale) ; (c) Interferometric autocorrelation ; (d) Optical 
spectrum (linear scale). (e,f): Numerical simulations showing the propagation of a soliton molecule 
within a dispersion-managed cavity roundtrip, in the stationary state. The average dispersion is (e) 
normal ; (f) anomalous. From [78-80].  
 
 
4.3 Vibrating soliton molecules 
We can now move one step further in complexity by combining bifurcations with multiple pulses. 
Starting from a stationary two-soliton molecule, one can wonder whether there would exist 
bifurcations leading to a pulsating soliton molecule, which could be similar to an excited vibrating 
mode of a molecule of matter. We reported the first positive evidence in 2006. By monitoring the 
output of an ultrafast fiber laser, as the laser parameters were tuned, the blurring of the 
experimentally recorded spectral fringes and that of second-order cross-correlation peaks were 
attributed to an oscillation of the relative temporal separation and phase between two bound 
dissipative solitons, an interpretation supported by detailed numerical simulations of the laser 
dynamics [93]. The topic of pulsating soliton molecules gained further consideration a decade 
later, with the generalization of real-time spectral measurements that provided a strong 
experimental confirmation [94,95]. To this end, the time-stretch dispersive Fourier-transformation 
(DFT) was used. DFT finds its origin in a groundbreaking technical research article published in 
1973 entitled “A new approach to picosecond laser pulse analysis, shaping and coding”, where the 
principles of spectral analysis at multi-MHz repetition rates as well as those of ultrafast pulse 
shaping were laid down, an article that was mostly forgotten a generation later [96]. Being a linear 
technique relatively simple to implement with modern instrumentation, DFT has recently become 
the most popular real-time spectral measurement method in ultrafast optics. It consists of 
transmitting each laser output pulse waveform through a highly dispersive medium in a linear and 
far-field propagation regime. The optical pulse then stretches considerably to adopt an intensity 
profile that maps its spectral intensity profile, which is directly read out by a fast photodetector 
and oscilloscope detection system [97]. The optical spectrum 𝐼(𝜔) of two identical pulses, delayed 
in time by t , having a phase difference 𝜑, simply reads:  
 
𝐼(𝜔) = 2𝐼,(𝜔)[1 + cos(𝜔𝜏 − 𝜑)],        (7)  
 
where 𝐼,(𝜔) is the single pulse spectrum, as a function of the angular frequency 𝜔. Therefore, in 
the case of a pulsating soliton molecule, by processing consecutively recorded spectra, the 



evolution of 𝜏(𝑛) and t 𝜑(𝑛) as a function of the roundtrip number n is obtained. This way, several 
types of pulsating soliton molecules have been characterized experimentally and validated 
numerically, such as vibrating soliton molecules (featuring both separation and phase oscillation), 
and phase-only oscillating molecules [94,95]. In some cases, the oscillation of soliton molecules 
can become strongly anharmonic [98]. In vivid analogy with the dynamics of matter molecules, 
the formation and dissociation of unstable soliton molecules has been recorded, as well as transient 
multisoliton states preceding the formation of stable soliton molecules [98,99].  
 
Temporal optical soliton molecules are remarkable physical objects of ultrafast nonlinear science. 
When their soliton constituents bind at separations significantly larger than their pulse width, most 
of the dynamics can be captured in a reduced dimensional space featuring, typically, two extra 
degrees of freedom per additional soliton: the relative separation and phase with its nearest 
neighbor3. Recently, soliton-pair molecules have been shown to exhibit low-dimensional chaotic 
motions [102]. These dynamics were recorded by the balanced-optical correlation method, a 
technique which allows the continuous measurement of relative pulse separation with an 
unprecedented sub-femtosecond resolution [103]. Investigations also demonstrated the possibility 
to synchronize vibrating soliton molecules to an external oscillator through optical injection [104]. 
Therefore, the prospect of developing effective dynamical models to predict soliton molecule 
dynamics in the vicinity of a given configuration is promising, which could for instance become a 
tool to utilize soliton molecule dynamics to store and process information [87,105].  
 
To close this section, let us remark that the fruitful analogy between soliton with matter molecules 
has clear limitations, as there are no such linear oscillation modes and quantized excited energy 
levels. Nevertheless, the formation of soliton molecules entails a change of the stored cavity 
energy, which yields the equivalent of a quantized binding energy [106]. The major difference 
remains that dissipative soliton molecules live in a non-Hamiltonian open system sustained by an 
energy flow, so that they quickly vanish once the laser pump is switched off.  
 
4.4 Incoherent dissipative solitons 
Starting from stable mode locking and altering the laser cavity parameters, we typically cross the 
successive boundaries of stationary and pulsating dissipative solitons, to end up with the complete 
disruption of the mode-locked pulse operation. Nonetheless, abrupt bifurcations of a different type 
can occur, leading for instance to peculiar chaotic-pulse dynamics. In the latter, a strong 
competition between a marked instability and efficient localizing physical effects takes place to 
maintain a short pulse localized in its average moving reference frame. In this paradoxical 
situation, despite the persistence of a rather well-defined round-trip time for the traveling chaotic 
pulse, the laser regime can no longer be qualified as mode locked. Such situation can take various 
forms and magnitudes, which are encompassed within the notion of incoherent dissipative solitons 
[107,108]. This recent terminology presents an interesting parallel with the notion of incoherent 
solitons within conservative systems that involves the self-trapping of incoherent light in either 
the spatial or temporal domain, achieved by using a nonlinear medium characterized by a slow 
response or by nonlocality [109-111]. For the incoherent solitons observed in ultrafast lasers, 
dissipation always takes the leading role, enabling the pulse localization in both the temporal and 
spectral domains –  in contrast to the spectrally accelerated temporal incoherent solitons [110]. 
The meaningfulness of averaged pulse features is the clear signature of an underlying chaotic 
attractor, which employs dissipative processes to limit the pulse excursions inside of the dynamical 
system that has otherwise infinite dimensions. Chaotic pulse dynamics in ultrafast lasers include 

 
3 The general assumption of identical pulse profiles does not hold true when time-delayed dynamics become important 
[100], and can also break down for closely interacting soliton molecules [101].  



soliton explosions [112,113], dissipative rogue waves [114,115], and noise-like pulse emission 
[116-124]. Chaotic dissipative soliton attractors can be classified according to the level of 
incoherence attributed to the laser pulses. Soliton explosions are defined by intermittent periods 
of pulse instability followed by recovery, the pulse returning to a quasi-stationary coherent mode 
locking before the next instability develops. Such regime can thus be qualified as partially mode 
locked.  
 
In contrast, noise-like pulse emission and dissipative rogue waves relate to chaotic pulse dynamics 
bearing a large degree of incoherence, since the internal field structures behave chaotically at all 
times, from one cavity roundtrip to the next and even within a given cavity roundtrip. Noise-like 
pulse (NLP) emission, revealed in 1997 [116], is characterized by the complete loss of mutual 
coherence between successive pulses [122,123]. This self-starting regime is characterized by a 
compact waveform, whose shape and duration strongly depend on the laser scaling parameters and 
a complex fine structure consisting in a large collection of sub-picosecond chaotic pulses. The 
statistics of the spectral waveforms reveals the presence of spectral rogue waves [123]. Considered 
initially as a scientific curiosity, NLP dynamics subsequently attracted considerable attention, with 
attempts to identify its fundamental origin as well as to exploit its potentialities of high-energy and 
wideband short-pulse generation directly output from a compact fiber laser system [116-121]. 
According to the fiber laser parameters, NLP energy can reach nanojoule to microjoule levels, 
scaling with the duration of the incoherent wave packet, from picosecond to nanosecond, as a 
function of the laser pump power [124].  The physical mechanisms at play seem multifarious, 
reflecting the diversity of laser cavity architectures and parameters where NLP regimes have been 
found. More precisely, NLP can build up in either normal or anomalous dispersion regime of the 
laser, in either short or long cavities. Whereas it is anticipated that in long cavities, NLP dynamics 
can be strongly affected by higher-order perturbations terms – such as polarization instability and 
Raman scattering – the onset of these incoherent dissipative soliton dynamics under a reduced set 
of physical effects – i.e., typically featured in the master Eqn. (5)&(6) – has been demonstrated 
[108]. This highlights the universality of the phenomenon, which is linked to the existence of 
strange attractors. Figure 4 displays the self-starting buildup of the NLP regime in a fiber laser 
cavity in both situations of anomalous and normal dispersion regime that is recorded 
experimentally through the time stretch DFT technique. In both cases, we can see an explosive 
spectral broadening transition, and the fading off of pulse precursors. We also clearly see major 
differences, such as a smoother, less explosive, transition within anomalous dispersion, with a 
longer decay of the background. Though each case qualifies as the buildup of a generic NLP 
dynamics, the detailed features strongly depend on the cavity parameters. For instance, an 
anomalous dispersion is conducive to soliton pulse shaping, which can generate short pulse 
structures able to maintain over a few cavity roundtrips but nevertheless collide and subsequently 
disappear within the chaotic pulse bunch. Instead, the normal dispersion regime yields strongly 
diffusive pulse bursts that quickly pop up and vanish.  
 
By extension, the incoherent dissipative soliton concept is fully applicable to other active optical 
systems, for instance involving additional field dimensions, such as polarization components or 
multiple transverse modes [107].  
 
 



  
 
Figure 4. Recording of the buildup of NLP dynamics within an erbium-doped fiber ring laser, using 
the time stretch DFT method. The cavity dispersion is (a) normal, (b) anomalous. From [108].  
 
 
5. Conclusion and prospects 
In this article, a historical progression was exposed to better appreciate the numerous inputs of 
soliton concepts in ultrafast laser dynamics, though it was obviously not possible to provide an 
exhaustive account within the limitations of the present format. Whereas, according to the physical 
situation, the concepts of conventional (Hamiltonian) and dissipative solitons were found to echo, 
oppose, or complement each other, both concepts are definitely indispensable in the culture of 
laser scientists. For ultrafast lasers, the concept of dissipative solitons is the broadest and therefore 
the most applicable one, explaining the generation of seemingly paradoxical regimes such as bright 
solitons in the normal dispersion regime, highly chirped intracavity pulses, pulsating soliton 
dynamics, soliton molecules and more complex soliton pattern formations, as well as noise-like 
pulses and other incoherent and chaotic short pulse formations that abound in ultrafast laser 
dynamics. Nevertheless, the background of conventional NLS solitons remains essential to 
apprehend intracavity propagation phenomena, especially when taking place within optical fibers 
in the anomalous dispersion regime, such as pulse shaping effects, instabilities at high peak 
intensity, and the resonant scattering of dispersive waves.  
 
The concept of a dissipative soliton is readily generalized to higher dimensions, such as in ultrafast 
lasers with multiple transverse modes, where it provides a working explanatory picture for 
spatiotemporal mode locking. Whereas the fiber laser platform has been to date the most prolific 
one to test and explore dissipative soliton dynamics, most observations have seen an analogue 
within ultrafast bulk laser systems. The dissipative soliton paradigm tells us that in the most 
general case, short laser pulses are not mode locked since stationary mode locking merely 
represents the “tip of the iceberg” of ultrafast dynamics.  
 
Therefore, exploring bifurcations and non-stationary dynamics, beyond being fun fundamental 
science, also represents a way to develop better control strategies. Indeed, it is important in laser 
engineering to develop early warning strategies that are able to anticipate the growth of an 
instability that could lead to the disruption of the expected mode locking regime or to a potential 
optical damage in industrial processes. For instance, the monitoring in the radiofrequency domain 
could trace the onset of typical bifurcations, such as the period-doubling bifurcation and ideally 
use a stabilizing feedback loop to set the laser parameters back into a safe operating domain [91].   



 
In a bigger picture, there is currently an incentive to move beyond the common laser with a single 
on/off switch and progress toward more flexible multi-purpose ultrafast laser sources. For instance, 
advanced ultrafast laser oscillators could feature several of the following possibilities accessed 
through a user-friendly interface: wider spectral tunability, adjustable pulse profile and pulse 
duration, generation of multi-pulse patterns (soliton molecules, harmonic mode locking, pulse 
bursts), switching dynamics (coherent and incoherent solitons), and, in the case of lasers with 
multiple transverse modes, control over the beam profile. Such endeavor is, in general, extremely 
complex, as laser scientist do not have, in the real experimental world, a fully established 
correspondence between accessible laser cavity parameters and the laser dynamics. Therefore, one 
developing paradigm is to get assistance from artificial intelligence (AI). In 2015, we proposed 
and experimentally demonstrated the first ultrafast laser using AI – with genetic algorithm 
optimization [125]. Since then, among the growing trend to use AI in all scientific disciplines – 
and photonics in particular – for tasks as varied as system design optimization, pattern recognition, 
dynamical prediction, and control, “smart lasers” are being investigated at an increased pace [126-
138]. For instance, in the case of complexified laser cavities, such as multimode fiber lasers with 
spatiotemporal dynamics, AI could bring invaluable services by enabling to navigate within the 
wealth of accessible dynamics, classify and control them [132,133]. This will likely enable a major 
evolution of the field of ultrafast lasers and ultrafast photonics in general, from both fundamental 
and applied perspectives.  
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