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Abstract: The composition of the juice from grape berries is at the basis of the definition of tech-
nological ripeness before harvest, historically evaluated from global sugar and acid contents. If
many studies have contributed to the identification of other primary and secondary metabolites
in whole berries, deepening knowledge about the chemical composition of the sole flesh of grape
berries (i.e., without considering skins and seeds) at harvest is of primary interest when studying the
enological potential of widespread grape varieties producing high-added-value wines. Here, we used
non-targeted DI-FT-ICR-MS and RP-UHPLC-Q-ToF-MS analyses to explore the extent of metabolite
coverage of up to 290 grape juices from four Vitis vinifera grape varieties, namely Chardonnay, Pinot
noir, Meunier, and Aligoté, sampled at harvest from 91 vineyards in Europe and Argentina, over
three successive vintages. SPE pretreatment of samples led to the identification of more than 4500
detected C,H,O,N,S-containing elemental compositions, likely associated with tens of thousands of
distinct metabolites. We further revealed that a major part of this chemical diversity appears to be
common to the different juices, as exemplified by Pinot noir and Chardonnay samples. However,
it was possible to build significant models for the discrimination of Chardonnay from Pinot noir
grape juices, and of Chardonnay from Aligoté grape juices, regardless of the geographical origin or
the vintage. Therefore, this metabolomic approach opens access to a remarkable holistic molecular
description of the instantaneous composition of such a biological matrix, which is the result of
complex interplays among environmental, biochemical, and vine growing practices.

Keywords: Chardonnay; Pinot noir; Meunier; Aligoté; molecular fingerprints; mesocarp

1. Introduction

Within the frame of winemaking, the composition and the analysis of grape juice—here
considered as the sole flesh of berries—are of great importance throughout ripening up to
harvest, as the juice contains primary metabolites, including sugars (notably glucose and
fructose) and organic acids (notably L-tartaric and L-malic acids) [1], whose concentration
evolution is at the basis of the decision to harvest [2]. Many studies have shown that their
concentration at harvest is controlled by several factors, among which grape variety, vine
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growing practices, soil types, and environmental conditions with heat and water stress
being at the center of the current concerns about climate change [2,3]. Amino acids also
constitute major primary metabolites and fundamental nutrients for yeasts during alcoholic
fermentation [4].

Grape juices also contain several known secondary metabolites, whose occurrence
has also been the object of many studies. The major families include aroma compounds
with C13-norisoprenoids, terpenes, benzene derivatives, alcohols, esters, and thiols, often
present as glycosidic precursors [5–12]. Also included are phenolics with acid phenols
in particular, peptides, carotenoids, and some flavonols, among which quercetin and
hormones with abscisic acid (ABA) are a well know example, and vitamins [13–17]. A few
thousand secondary metabolites have thus been observed and quantified so far in grape
and wine matrices, thanks to various targeted analytical methodologies.

Furthermore, the last two decades have seen the advent of targeted and non-targeted
metabolomic approaches, combined with advanced statistical tools, aiming at provid-
ing more comprehensive information about the actual chemical diversity, including low-
concentrated metabolites, of various biological samples and body fluids [18,19]. In the
case of grape and wine matrices, and as far as non-volatile compounds are concerned,
Mass Spectrometry coupled to Liquid Chromatography (LC-MS) has certainly been cen-
tral to the highest number of metabolomic analyses. LC-MS-based metabolomic analyses
of grape berries have thus been applied to compare varieties, or to evaluate various im-
pacts of vineyard practices or environmental parameters on the grape metabolome [20–24].
However, matrix effects are also central to LC-MS-based metabolomics, and particular
attention has already been paid to sample preparation and to solvent extraction to get the
best metabolite coverage in grape analysis [25,26]. These authors showed that a solvent
containing approximately equal amounts of methanol and chloroform and up to 20% water
allowed the detection of up to 4500 features by ElectroSpray Ionization Reverse Phase Ultra
Performance Liquide Chromatography coupled with Time of Flight-Mass Spectrometry
(ESI RP-UPLC-ToF-MS) of grape berries. However, as in several other studies, the different
compartments of the berry (skin, flesh and seeds) were not analyzed separately.

Alternatively, the development of ultra-high resolution mass spectrometry with Direct
Infusion Fourier Transform-Ion Cyclotron Resonance Mass Spectrometry (DI-FT-ICR-MS)
has offered new perspectives for exploring the chemical complexity of bio/geo/chemical
matrices [27]. Thanks to extraordinarily high sensitivity and mass resolution, DI-FT-ICR-MS
non-targeted analyses of musts, wines, and spirits could, for example, provide unprece-
dented fingerprints [28], discriminate six varieties of grapes [29], identify forest-related
specific fingerprints in barrel-aged wines [30], or simultaneously identify hundreds of
volatile and non-volatile compounds in gin [31]. These analyses highlighted both the
small amounts and the very minimal preparation steps required for remarkably efficient
metabolite coverage in wine and spirit analysis. Although DI-FT-ICR-MS could be applied
directly on methanol-diluted grape juice samples [32] thanks to the high dynamic range of
the signals, grape juice fractionation by SPE is supposed to provide the highest metabolite
coverage through the removal of highly abundant primary sugar metabolites, thus enhanc-
ing the detection of lower concentration secondary metabolites. In this context, combining
DI-FT-ICR-MS with the highest resolution and thus compositional selectivity with the
possibility to identify isobars by RP/HILIC-UHPLC-Q-ToF-MS2 has proven remarkably
efficient for increasing the range of unknown detectable metabolites in life sciences and
foods [33].

In this study, an extensive set of grape juices from two white grape varieties, V. vinifera
Chardonnay and Aligoté, and two red grape varieties, Pinot noir and Meunier, collected at
harvest in 13 different regions representing 91 vineyards in Europe and Argentina, were
systematically analyzed in negative ionization mode by DI-FT-ICR-MS and RP-UHPLC-Q-
TOF-MS in order to evaluate and compare the impact of two minimal sample preparations
on the performance of metabolite coverage. These sample preparations were either diluted
(non SPE), or SPE fractionated before analysis. We further used this dataset to probe
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the capacity of the combined methodologies to characterize the metabolite coverage and
discriminate grape juices according to different parameters such as variety or geographical
origin of the grape.

2. Materials and Methods
2.1. Grape Berry Collection

Grape juices were obtained throughout a random collection of berries from 91 distinct
vineyards (Table 1), covering five countries (Argentina, France, Germany, Italy, and Por-
tugal), 13 wine producing regions (Adige Valley, Alsace, Beaujolais, Bordeaux, Burgundy,
Champagne, Douro, Languedoc, Piemont, Rheingau, Tarn, Uco Valley, and Württemberg),
three vintages (2019, 2020, 2021) and four Vitis vinifera varieties (Aligoté, Chardonnay,
Meunier, and Pinot noir). For each considered grape variety within a given plot and for a
given vintage, grape bunches were randomly picked from incoming harvest cases through-
out the harvest duration. To reflect the genuine natural conditions of the vineyards, we
complied with the winegrowers’ decision to harvest (Table S1). Then, pseudo-biological
replicates were made by randomly picking two pools of 100 berries within these grape
bunches. In some cases (not enough berries), only one pool of 100 berries was used for
a vineyard/vintage. The berries were then frozen to prevent any further development.
Grape juices were finally obtained by manually pressing the thawed berries in plastic bags,
and the collected juice was then frozen before further sample preparation (−20 ◦C).

Table 1. Details of the number of samples collected for each variety in function of regions and vintages.

Region
Aligoté Chardonnay Meunier Pinot Noir

2019 2020 2021 2019 2020 2021 2019 2020 2021 2019 2020 2021

Adige valley 10
Alsace 2 4 4

Beaujolais 1
Bordeaux 1 2 1 2 2 1 2 1 2 2
Burgundy 4 4 2 20 35 8 29 26 10

Champagne 2 1 1 1 2 1
Douro 4
Gaillac 1 2 2 1 2 2 1 2 2 1 2 2

Languedoc 2 2 6 6 2 2 6 6
Piedmont 2 2 2 3
Rheingau 14

Uco Valley 5 6 8 6
Württemberg 2 2

2.2. Sample Preparation

Samples were defrosted at ambient temperature prior to vortexing and centrifugation
(10 min, 10,000 rpm, 4 ◦C). The further preparation steps were according to Roullier-Gall,
et al. [34]. To perform solid phase extraction (SPE), the samples’ supernatant was first
acidified to pH2 with pure formic acid (LC-MS grade). Bond Elut C18 cartridges (100 mg,
1 mL, 120 µm, Agilent, Les Ulis, France) were then conditioned with 2 mL methanol
(LC-MS grade), followed by 1 mL of acidified (pH2, formic acid) ultra-pure water (18.2 MΩ,
Millipore, Merck, Darmstadt, Germany). Samples were then filtered through cartridges,
which were washed with 1 mL of pH2 water prior to elution with 1 mL of methanol. All
filtrations were performed using a CHROMABOND SPE vacuum manifold at −0.2 Bar.
Before DI-FT-ICR-MS analysis, SPE extracts were 1/20 diluted in methanol. For RP-UHPLC-
Q-TOF-MS, SPE extracts were 1/2 diluted in 5% acetonitrile. Non SPE preparation (direct
dilution of the juices) was performed by diluting to 1/500 in methanol and to 1/5 in 5%
acetonitrile for DI-FT-ICR-MS and RP-UHPLC-Q-ToF-MS, respectively.
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2.3. DI-FT-ICR-MS

Fourier Transform-Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS) was used
with direct infusion of samples to an Apollo II electrospray ionization (ESI) source, working
in negative mode ESI (−), coupled to a 12T FT-ICR-MS (SolariX, Bruker Daltonics, Bremen,
Germany). Mass spectra were acquired in negative ionization mode with a flow rate of
120 µL/h within a mass range of 92–1000 Da. A total of 400 scans were accumulated for each
sample. Raw spectra were calibrated using Compass DataAnalysis 4.2 (Bruker Daltonics,
Bremen, Germany), and peaks with a signal-to-noise ratio (S/N) above 3 were considered.
The two matrices (SPE; non SPE) were then obtained by aligning all spectra of each type
within a 0.5-ppm alignment error (defined as the ratio of the difference between two aligned
masses (m/z1 − m/z2) to one of these masses (m/z1) × 106). Molecular formulae were then
assigned using an in-house developed software tool (NetCalc v2.0) [35].

2.4. RP-UHPLC-Q-ToF-MS

Ultra-High-Pressure Liquid Chromatography (UHPLC, Dionex Ultimate 3000, Thermo
Fischer Scientific, Waltham, MA USA) was used for separation, coupled to a MaXis plus
MQ ESI-Q-ToF mass spectrometer (Bruker, Bremen, Germany). Reverse Phase-Liquid
Chromatography (RP-LC) was performed with an Acquity BEH C18 1.7 µm, 100 × 2.1 mm
column (Waters, Guyancourt, France). Elution was performed using a gradient of water (A)
and acetonitrile (B), both acidified with 0.1% (v/v) formic acid. For elution (40 ◦C), 5% (v/v)
of eluent B was used from 0 to 1.1 min followed by a gradual increase of eluant B up to
99.5%, reached at 6.40 min. Detection was performed in negative ionization mode, within
100 to 1500 Da range, using an electrospray at two bars of pressure for the nebulizer and
10 L/min for nitrogen dry gas flow, an end plate offset of 500 V, and capillary voltage of
4500 V. To recalibrate spectra, four times diluted calibrant ESI-L Low Concentration Tuning
Mix (Agilent, Les Ulis, France) was injected at the beginning of each run. Before batch
analysis, the mass spectrometer was calibrated using undiluted Tuning Mix in enhanced
quadratic mode, which allowed for the alignment of peaks with errors < 0.5 ppm. The
two matrices (SPE; non SPE) were then obtained using the Metaboscape software (Bruker,
Bremen, Germany, V 8.0.1), with the T-Rex 3D algorithm, using an intensity threshold of
4000 and considering [M−H]−, [M−H−H20]−, [M+Cl−]− ions.

2.5. Data Analysis

All statistical analyses and plot generation were performed within the R environ-
ment [36] (v 4.3.0). First, a data sanity check was performed over all datasets [37], leading
to two samples being removed. Two other samples missing in one dataset (DI-FT-ICR-MS
non SPE) were also removed from all datasets, leading to a total of 291 samples to be
analyzed by each methodology. For data description, only features present in at least
four samples were considered. As the four datasets (SPE, non SPE, for DI-FT-ICR-MS,
and RP-UHPLC-Q-ToF-MS) were obtained separately, alignment among the datasets was
performed as follows. The two DI-FT-ICR-MS datasets were aligned by matching the
assigned formulas. For alignment using RP-UHPLC-Q-ToF-MS (UHPLC-Q-ToF-MS (SPE)
vs. UHPLC-Q-ToF-MS (non SPE) or UHPLC-Q-ToF-MS vs. FT-ICR-MS), features identified
in RP-UHPLC-Q-ToF-MS where first grouped within a 2-ppm alignment error window to
identify potential isobars. The grouped m/z mean was then used to perform alignment
with DI-FT-ICR-MS data within a 5-ppm alignment error mass range. For the RP-UHPLC-
Q-ToF-MS vs. RP-UHPLC-Q-ToF-MS data alignment, a retention time (RT) tolerance of
10 s was used. In case of multiple matches, the lower mass differences and/or RT delta
were selected. Prior to statistical analysis, batch effect was checked and corrected using
the DBnorm package with the ber method [38,39]. Multivariate analysis was performed
on features present in at least 33% of the samples, and any zero value was replaced with
2/3 of the minimum value for each feature [40]. Principal Component Analysis (PCA) and
Orthogonal Partial Least Squares–Discriminant Analysis (OPLS–DA, n permutation = 500)
were performed using ropls [37], after Log10 transformation and pareto scaling for all
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datasets. Redundancy Analysis (RDA) and Variance Partition were used to compare the im-
pact of vintage, region, and cultivar [41,42] using the vegan package [43]. The significance
of RDA models was tested with 1000 permutations. Univariate statistics were generated
with the rstatix package [44]. Comparisons across treatment groups were performed using
the Kruskal–Wallis test followed by Dunn’s post-hoc pairwise comparison. Intensities Fold
Change (FC) between varieties were pairwise tested using either Student t-test or Mann–
Whitney U-test. p-values were corrected (p.adjust) using the False Discovery Rate method
(FDR) [45], and adjusted p-values < 0.05 were considered significant. To aid biological
interpretation, the MetaCyc (v 26.0), Plant Metabolic Network (PMN, v 15.0), and GrapeCyc
(v 9.0.1) databases were used to perform annotation on the identified ions of interest using
the MetaboAnnotation package [46].

3. Results and Discussion
3.1. Global Metabolome of Grape Juices

The main objective of this study was to explore the extent of grape juice metabo-
lite coverage, which can possibly be reached through integrated mass spectrometry-
based metabolomics. In contrast with most LC-MS-based molecular analyses of grape
berries [20–26], this study focused on the sole flesh of grape berries (mesocarp), i.e., without
considering skins and seeds. To that purpose, up to 290 grape juice samples from four grape
varieties (all characterized by uncolored flesh), were collected at harvest from 91 vineyards
in Europe and Argentina (Table 1). The diversity in geographical origins was aimed at
introducing the largest possible variability in compositions. Figure 1 gathers characteristic
features resulting from the different analytical strategies considered here, when applied
to all the samples, regardless of the geographical origin, the vintage, or the variety. The
ESI (−) ionization mode was selected as a good compromise for the detection of the rather
polar hydrophilic compounds consistently expected from acidic grape juices. In the case
of DI-FT-ICR-MS, this mode has been shown to favor a larger variety in composition and
abundance of compounds and a smaller number of adducts in wines, as well as a better
resolution than positive ionization [47].
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Krevelen diagram representation of all detected DI-FT-ICR-MS mass peaks transformed into assigned
elemental composition with an assignment error below 0.5 ppm, and a O/C ratio below 1.1. Dot sizes
are proportional to the relative intensity of corresponding mass peaks, and with the following color
codes: CHO (blue), CHON (orange), CHOS (green), CHONS (red); (a2,b2) all detected RP-UHPLC-Q-
ToF-MS features represented as 2D maps projecting mass vs. RT (retention time).

The ultra-high-resolution power of DI-FT-ICR-MS readily allowed the detection of up
to 9000 mass signals with a signal-to-noise ratio >3 after SPE pretreatment of grape juices.
Upon pre-processing these data, including mass difference network analysis, 4629 observed
mass signals present in at least four samples could be converted into unambiguous ele-
mental compositions based on the main isotopic elements (12C, 14N, 16O, 32S, 1H) within an
assignment error window of 0.5-ppm (defined as the ratio of the difference between the ex-
perimental mass and the exact mass (m/zexp − m/zexact) to the experimental mass (m/zexp)
× 106), thus providing an as yet unprecedented representation of the chemical diversity of
the sole flesh of ripe grape berries (Figures 1(a1,b1), 2a,b, S1 and S2). Whether samples had
been SPE pretreated or not, H/C vs. O/C van Krevelen diagrams (Figures 2a,b, S1 and S2)
revealed a remarkable metabolome coverage with likely tens of thousands of compounds
(see below, Section 3.2). This metabolome, which comprises peptides and amino acids, fatty
and organic acids [30,48], and extensive homologous series of conjugated compounds, i.e.,
alkylated compounds [49], and/or glycosylated compounds [50–52] consistently with such
carbohydrate-rich matrices, provided a snapshot of the numerous metabolic pathways
involved in the ripening of grape berries. Our results further revealed that common metabo-
lites to SPE and non SPE pretreated samples could be found throughout the van Krevelen
diagram regions, and covered a high range of polarity, suggesting that the hydrophilic char-
acter of FT-ICR-MS detected masses were weakly influenced by SPE adsorption behaviors,
with likely high (−) ionization efficiency (Figure 1(a1,b1)). However, if both pretreatments
led to the detection of metabolites over similar mass ranges (200–750 Da), the SPE pre-
treatment allowed for the detection of more abundant mass peaks between ca. 300 and
550 Da (Figure 1(a1)), characterized by medium polarity as expressed by their narrower
range of O/C ratios, and mostly found in the peptide/nucleic acids and related conjugated
compound region (Figures 2a,b and S1). Such mass peaks would exhibit lower ESI (−)
ionization efficiency and be suppressed otherwise without SPE pretreatment.

Because of a significantly lower resolving power of RP-UHPLC-Q-ToF-MS, the 1648
and 1599 (Figure 3, Table S2) detected features for SPE and non SPE pretreatments, re-
spectively, could not be straightforwardly and unambiguously transformed into elemental
compositions, and the corresponding results were more rigorously presented as 2D maps
projecting mass values as a function of retention times (Figure 1(a2,b2)). As confirmed by the
density distributions of the detected mass peak intensity (Figure S2), the SPE pretreatment
considerably reduced the number of hydrophilic low molecular weight metabolites (reten-
tion times < 1.5 min), thus favoring the detection of higher frequencies of less hydrophilic
and heavier metabolites (mass > 250 Da, RT > 2.5 min), up to 1000 Da. Interestingly, some
common buckets (RT; mass) to SPE and non SPE pretreated samples could be found at low
retention times, indicating that SPE pretreatment did not remove all the highly hydrophilic
metabolites initially present in the juice. However, it must be noted that under our exper-
imental conditions (RP, C18 column), for simple grape juice dilution (non SPE) and to a
lesser extent for SPE pretreated grape juices, the LC step did not prevent high abundance of
detected mass peaks for retention times < 1 min (Figures 1(a2,b2) and S2), which indicates
that for low RTs, chromatographic separation could be considered inefficient, and which
points to the need for HILIC-UHPLC-Q-ToF-MS for a further increase of the metabolite
coverage [34].
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Figure 2. Comparison of the global Chardonnay and Pinot noir metabolomes obtained by DI-FT-
ICR-MS, considering all geographical regions and vintages. H/C vs. O/C van Krevelen diagram
representation for Chardonnay (a) and Pinot noir (b) with the following color codes for elemental
compositions: CHO (blue), CHON (orange), CHOS (green), CHONS (red). These diagrams represent
mass peaks annotated into assigned elemental composition with an assignment error below 0.5 ppm,
and an O/C ratio below 1.1, a H/C ratio below 1.5, and present in at least four samples for each
variety. Dot sizes are proportional to the relative intensity of corresponding mass peaks. Comparison
between annotated mass peaks for the two cultivars is reported in a Venn Diagram (c). Summary
of comparisons of numbers of detected features between the two cultivars for the four analytical
methods of this study (d).

Figure 2, which focuses on all the detected features in Chardonnay and Pinot noir
samples only, provides a striking illustration of the high compositional similarity between
grape juices of a red and a white wine grape variety. Considering the FT-ICR-MS results of
SPE pretreated samples, 66.2% of the annotated mass peaks detected in at least four samples
of Chardonnay and four samples of Pinot noir were common to the two varieties, whereas
only 6.6% and 27.2% were only detected in Chardonnay and Pinot noir juices, respectively
(Figure 2c). It must be noted that, although care had been taken to prevent juice/skin contact
while Pinot noir berries were pressed, some skin extraction could possibly have occurred.
This would contribute to the higher relative proportion of annotated masses specific to
Pinot noir in the polyphenolic region of the van Krevelen diagram (H/C between 0.8 and
1.2; O/C around 0.5 and 0.7; Figure 2b). Figure 2d further gathers similar consideration
for the other analytical methods, which shows that, under our experimental conditions,
RP-UHPLC-Q-ToF-MS analyses of these grape juices could hardly detect features (present
in at least four samples within each variety) specific to each of the varieties, with at best
22 out of a total of 1644, for SPE pretreated Pinot noir samples.
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3.2. Aligning the Ultra-High-Resolution Power of DI-FT-ICR-MS with the UHPLC-Controlled
High Resolution of RP-UHPLC-Q-ToF-MS

As shown in Figure 3, and in agreement with the literature [26,53], SPE pretreatment
enabled the best metabolite coverage by DI-FT-ICR-MS with up to 4629 assigned elemental for-
mulas, whereas for non SPE, only 2400 mass peaks could be assigned an elemental formula. This
is a direct representation of the filtering impact of SPE pretreatment on ESI (−) DI-FT-ICR-MS
leading to the significant reduction of adduct-formation salts, and of carbohydrates-in particular,
sugars with concentrations at harvest being classically higher than 200 g/L-which contribute
to a competition for ionization in the electrospray [54]. Figure 3 also indicates that whatever
the pretreatment used (SPE or non SPE), up to 1159 mass peaks (and corresponding elemental
compositions) were systematically detected in at least four samples, by DI-FT-ICR-MS. The same
consideration for RP-UHPLC-Q-ToF-MS analyses led to 573 buckets (RT; mass) systematically
found whatever the pretreatment used. This represented about a third of the number of buckets
detected either by SPE (1648) or non SPE (1599) pretreated samples analyzed by RP-UHPLC-
Q-ToF-MS. However, without alignment with DI-FT-ICR-MS data, it was unrealistic to assign
elemental compositions to mass values related to these buckets, because of the lower resolving
power of RP-UHPLC-Q-ToF-MS.

In previous papers [34], we have shown that the alignment of highly resolved mass
peaks detected by DI-FT-ICR-MS with isobaric LC-separated mass peaks detected by
LC-MS could clearly increase the scope of detectable unknown metabolites in wines. De-
spite a lower resolution, RP-UHPLC-Q-ToF-MS mass peaks with hits in DI-FT-ICR-MS
peaks could then be assigned an unambiguous elemental formula (further validated by
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MS2), whereas multiple RP-UHPLC-Q-ToF-MS-detected retention times for a common
mass peak would count the possible DI-FT-ICR-MS detected isobars. All results from
all possible alignments were gathered in Table S2. A first striking feature was that after
alignment within a 2-ppm alignment error window, distinct numbers of elemental com-
positions appeared to be common/unique to DI-FT-ICR-MS and RP-UHPLC-Q-ToF-MS
analyses, depending on the aligned sets of data, illustrating the complementarity of the
two platforms for grape juice analyses [34,47]. A maximum of 210 elemental compositions
appeared to be common to the four analytical strategies (Figure 3, Table S2). Looking more
closely at common compositions to DI-FT-ICR-MS and RP-UHPLC-Q-ToF-MS for non SPE
pretreatment, Table 2 and Figure 3 show that 368 DI-FT-ICR-MS compositions (representing
12.2% of assigned compositions) found hits in RP-UHPLC-Q-ToF-MS spectra. Consistent
with the filtering effect and the reduction of ion suppression of SPE, up to 623 hits (11.4%)
were observed between the two MS methods, after SPE pretreatment. Since a given mass
value observed in RP-UHPLC-Q-ToF-MS could be associated with multiple retention times,
the count of RP-UHPLC-Q-ToF-MS hits could be higher than for DI-FT-ICR-MS, as shown
both for SPE and non SPE pretreated samples, with up to 1035 (62.8%) and 825 (51.6%)
aligned peaks, respectively.

Table 2. Focus on the number of features related to DI-FT-ICR-MS and RP-UHPLC-Q-ToF-MS mass
peak alignments for SPE and non SPE pretreatments.

Method

DI-FT-ICR-MS RP-UHPLC-Q-ToF-MS

n
(Total)

Chemical
Class

n
Chemical Class

n
Total 1

n
Chemical Class 1

n Isobars

Mean 2 Range 2

SPE
623

(11.4%)

CHO 430 (69%)

1035
(62.8%)

794 (76.7%) 1.5 1–6

CHNO 58 (9.3%) 71 (6.9%) 1.1 1–3

CHNOS 58 (9.3%) 77 (7.4%) 1.2 1–6

CHOS 77 (12.4%) 93 (9%) 1.1 1–4

non SPE
368

(12.2%)

CHO 246 (66.8%)

825
(51.6%)

623 (75.5%) 1.8 1–13

CHNO 55 (14.9%) 99 (12%) 1.4 1–4

CHNOS 28 (7.6%) 47 (5.7%) 1.3 1–4

CHOS 39 (10.6%) 56 (6.8%) 1.2 1–3
1 “n” corresponds to the number of common elemental compositions between the two analytical methods within
a 2-ppm mass peak alignment error. 2 “n isobaric mean” is the average number of retention times associated with
a given elemental composition and “n isobaric range” indicates the range of retention times associated with a
given elemental composition (RP-UHPLC-Q-ToF-MS analyses).

If the average number of observed retention times was between one and two for a
given mass value, Table 2 further showed that some DI-FT-ICR-MS mass peaks could
frequently be associated with up to four retention times, and in some case up to 13 distinct
retention times. Assuming a restrictive 2-ppm alignment error window for the alignment
procedure within RP-UHPLC-Q-ToF-MS spectra, and considering that only about 12% of
the DI-FT-ICR-MS peaks found hits in RP-UHPLC-Q-ToF-MS peaks, one could hypothesize
that the actual chemical diversity probed by DI-FT-ICR-MS in SPE treated grape juice
samples is certainly of a few tens of thousands of metabolites. Furthermore, upon breaking
down common mass peaks into distinct compositions, Table 2 showed that most of the
mass peaks aligned between the two MS methods were assigned CHO-based elemental
formulas. This result highlighted the complementary power of DI-FT-ICR-MS to more
evenly probe the diversity of S/N-containing metabolites (Figure 3). It must be noted that
the case of 13 distinct retention times was observed for non SPE samples (Table 2), for a mass
peak at 215.03279 Da easily assigned the C6H12O6 [M+Cl]− ion formula, corresponding
to a chlorine adduct of glucose [55]. The observation of up to 13 retention times over
the 1–5.74 min range in RP-UHPLC-Q-ToF-MS spectra raised the question of competition
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for ionization in non SPE pretreated samples, with the possible need to better adjust the
dilution. An explanation would be that highly abundant glucose and fructose molecules,
considered here as ”pollutants”, are eluted throughout the chromatographic time frame.

3.3. Grape Juice Discrimination by ESI (−) DI-FT-ICR-MS Applied to SPE Pretreated Samples

With such a high dimensionality of the data set, both in terms of individuals (grape
juice samples, Table 1) and variables (assigned elemental compositions, Figure 3), it is
possible to explore the ability of metabolomics to discriminate specific molecular finger-
prints among subsets of samples. Of the four grape varieties considered in this study,
Chardonnay and Pinot noir were the most widely represented in terms of vintages and
geographical origins and therefore terroirs, thus providing an unprecedented array of likely
subtle variations in metabolite expressions. However, if the discrimination between red
grape (Pinot noir) and white grape (Chardonnay) cultivars can be straightforward when
considering skin extracts because of the higher polyphenol concentrations for the former,
discrimination based on the sole berry juices, regardless of both the geographical origin
and the vintage, remains challenging, as demonstrated by Figure 2. As shown by a variance
partition study (Figure S3) of a data subset corresponding to DI-FT-ICR-MS analyses (SPE
pretreatment) of Chardonnay and Pinot noir grape juices for vintages 2019 and 2020, the
variety and the geographical origin could significantly explain only 15.9% and 10.4% of the
variance, respectively, whereas nearly 75% of the variance appeared unexplained by these
parameters or the vintage. Furthermore, the Redundancy Analysis (RDA) of mass peaks,
which significantly contribute to the geographical origin-related variance, showed that the
Languedoc region would be more different from Burgundy than the Southern Hemisphere
region of the Uco Valley in Argentina. These results (Figure S3) emphasized that, for such a
diversity of grape juice origins, environmental conditions along with vineyard practices
can indeed contribute to significantly modulating metabolite expressions even within a
single grape variety, thus introducing possibly significant noise into targeted analyses. In
contrast, non-targeted analyses can provide comprehensive transient chemical snapshots of
highly subtle metabolite expressions, which are considered to integrate contributions from
every plant–environment interaction associated with the multiple vineyard conditions,
and provided that the sampling is large enough, it is possible to apply robust multivariate
statistical analyses to such a dataset.

Figure 4a,b show that OPLS-DA models could significantly discriminate Chardon-
nay from Pinot noir grape juices, and Chardonnay from Aligoté grape juices (two white
cultivars), respectively. In both cases, the robustness of the model was guaranteed by
Q2-values > 0.9, for the quality of prevision, and R2Y-values > 0.97, for the goodness of
the fit. Furthermore, similar significant discriminations could also be obtained with non
SPE pretreated samples, and again with whatever the sample pretreatment used (SPE/non
SPE) with RP-UHPLC-Q-ToF-MS (Table S3). In contrast, attempts to discriminate between
the two red cultivars (Pinot noir and Meunier) failed through cross-validation steps, and
the non-supervised PCA statistical analysis appeared to be controlled by the geographical
origins of the vineyards regardless of the grape variety, with the first two components
explaining more than 48% of the variance (Figure 4c). A much smaller set of samples (with
only four geographical origins and two vintages, Table 1) could possibly contribute to this
model failure for the two red grape cultivars, but interestingly, when reduced to the same
geographical origins as those for Meunier, data subsets for Pinot noir and Chardonnay
could still lead to a significantly discriminant model (Table S3). This result suggests that
Pinot noir and Meunier grape juices could be too similar, and their discrimination would
be primarily driven by vineyard characteristics, with Champagne (emblematic land of
Meunier) being best discriminated (Figure 4c).
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Figure 4. Multivariate statistical analyses of DI-FT-ICR-MS metabolomic analyses of SPE pretreated
samples, regardless of the geographical origin or the vintage; supervised OPLS-DA discrimination of
Chardonnay/Pinot noir grape juices (a) and Chardonnay/Aligoté grape juices (b); non supervised
PCA analysis of Pinot noir and Meunier grape juices (c); each dot in (a–c) refers to a grape juice
sample; jitter plots and boxplots showing examples of VIP m/z peaks for Chardonnay and Pinot
noir (d) and for Chardonnay and Aligoté (e). Each jitter plot provides a density distribution of the
corresponding mass peak intensity (expressed as the Log10 value) among Chardonnay (yellow) and
Pinot noir (purple) samples (d), and among Chardonnay (yellow) and Aligoté (green) samples (e);
**, *** and **** indicate significance with p value at 1E−2, 1E−3, and 1E−4, respectively.

The molecular fingerprints for both Pinot noir and Chardonnay were dominated
by CHO compositions with up to 80.7% (142 assigned elemental formulas) and 50.9%
(31 assigned elemental formulas) of Variable Importance in Projection (VIPs), respectively
(Figure S4). SPE pretreated Pinot noir grape juices clearly appeared much richer in gly-
cosylated homologous series of polyphenolic structures (Figure S2). Although care had
been taken to prevent juice/skin contact while Pinot noir berries were pressed, some
skin extraction could not be completely ruled out, and these homologous series would
possibly be partly attributed to skin metabolites. Interestingly, when considering VIPs
which discriminated among non SPE treated samples (Figure S5), CHO compositions were
still dominating fingerprints, but with significantly fewer mass values (13 CHO elemental
compositions representing 59.1% for Pinot noir, and 26 CHO compositions representing
43.3% for Chardonnay). However, up to 35% of Chardonnay VIPs were S-containing com-
positions, including 15 CHNOS (25%) and 6 CHOS (10%), which confirmed the relatively
high importance of N/S-containing metabolites for this cultivar.

Finally, Figure 3 reports examples of VIP elemental compositions among tens of others
and likely hundreds of related compounds (Table S4), with the 359.09838 m/z peak, to which
the [C19H19O10]− ion composition could be assigned for Pinot noir, and the 439.1068 m/z
peak, to which the [C20H23O9S]− ion composition could be assigned for Chardonnay. The
latter S-containing formula was better observed as part of a three-membered homologous
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series with an O/C ratio of around 0.4 in non SPE pretreated samples (Figure S4) but no
pertinent structural assignment could be found in accessible databases. In contrast, the
CHO marker for Pinot noir, could likely correspond to a glycosidic adduct of syringic acid
or isomers, which have been identified in other Vitis vinifera red grapes [56], and whose
concentration in berries could be modulated by vine growing management. As witnessed
by the four associated RT from RP-UHPLC-Q-ToF-MS results, up to four glycosidic isomers
could possibly be more abundant in Pinot noir grape juices, depending for instance on
the O-glycosylation position. As to examples of VIPs discriminant for Chardonnay and
Aligoté, Figure 3 shows that the 203.08257 m/z peak, to which the [C11H11N2O2]− ion
composition can be assigned, was significantly more abundant in Chardonnay grape juices,
whereas the 366.11945 m/z peak, to which the [C17H20NO8]− ion composition can be
assigned, was significantly more abundant in Aligoté. A consistent structural assignment
to the Chardonnay VIP could be Tryptophan, as this grape variety has been shown to be
among the most concentrated in this precursor of indoleacetic acid [57,58]. Interestingly,
the Aligoté marker shown in Figure 3 could correspond to indolelactic acid glucoside,
another glucoside already identified in white grapes as a contributor to the “phenolic taste”
of white wines [59]. This would be the first identification of this metabolite in the rarely
studied Aligoté grape variety.

4. Conclusions

In this study, a large series of juices of ripe grape berries from four different varieties,
sampled in various vineyards internationally and over three successive vintages, were
analyzed by DI-FT-ICR-MS and RP-UHPLC-Q-ToF-MS, to explore the possible extent
of metabolome coverage. Samples were either SPE pretreated or not, before analysis.
DI-FT-ICR-MS analyses of SPE pretreated samples clearly provided higher metabolite
coverage, with only about 13% of the 4629 assigned elemental compositions being common
to RP-UHPLC-Q-ToF-MS detected masses. Our results revealed that the sole flesh of
Chardonnay, Pinot noir, Meunier, and Aligoté berries could likely contain tens of thousands
of compounds transiently present throughout the ripening period up to harvest. This result
is even more remarkable given that such chemical diversity does not include the many
seed- and skin-related metabolites such as polyphenols. Additionally, when considering
Chardonnay and Pinot noir, the two most represented grape varieties in our sampling,
we have shown that up to 75% of this chemical diversity is common to all juices, thus
emphasizing the fact that many similar metabolic pathways must be involved in the
ripening of these two varieties. Only 15.9% of the variance of Pinot noir and Chardonnay
metabolomes appeared to be explained by the variety. However, thanks to the high
dimensionality of our sampling and of the detected metabolomes, it was possible to build
significant models for the discrimination of Chardonnay from Pinot noir grape juices,
and of Chardonnay from Aligoté grape juices, regardless of the geographical origin or
the vintage. Several tens of related chemical markers could be identified, including, for
example, glycosides for Pinot noir. In summary, an excellent complementarity between the
two analytical methods was shown, with FT-ICR-MS being a rapid, reproducible, and highly
precise tool for non-targeted sample screening, and RP-UHPLC-Q-ToF-MS complementing
ideally with the possible resolution of isomers through the chromatographic dimension,
and the MS/MS fragmentation tools for structural identifications. Such results are of
primary importance when studying the enological potential of emblematic grape varieties
such as Pinot noir and Chardonnay, which can produce high-added-value wines from
many different vineyards around the world.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/foods13010054/s1, Figure S1: H/C vs. O/C van Krevelen diagrams repre-
senting all detected DI-FT-ICR-MS mass peaks transformed into assigned elemental compositions,
Figure S2: Display of the global grape juice metabolome detected by the different analytical strategies,
Figure S3: Multivariate statistical analysis of Chardonnay and Pinot noir grape juice metabolomes,
detected by DI-FT-ICR-MS after SPE pretreatment, Figure S4: S-plot and van Krevelen diagrams
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of SPE prepared samples (Chardonnay and Pinot noir grape juices) analyzed by DI-FT-ICR-MS,
Figure S5: S-plot and van Krevelen diagrams of non SPE prepared samples (Chardonnay and Pinot
noir grape juices) analyzed by DI-FT-ICR-MS, Table S1: Summary of the harvest date ranges for
the different vintages, varieties and hemispheres, Table S2: Summary of all DI-FT-ICR-MS and
RP-UHPLC-Q-ToF-MS mass peaks alignments broken down by common elemental compositions,
Table S3: Statistical analyses parameters for the different grape variety discriminations shown in
Figure 4, Table S4: Summary of all DI-FT-ICR-MS and RP-UHPLC-Q-ToF-MS mass peak alignments
that significatively discriminate Chardonnay and Pinot noir.
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