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S U M M A R Y 

Most of water reservoirs are underground and therefore challenging to monitor. This is par- 
ticularly the case of karst aquifers which knowledge is mostly based on sparse spatial and 

temporal observations. In this study, we propose a new approach, based on a supervised ma- 
chine learning algorithm, the Random Forests, and continuous seismic noise records, that 
allows the prediction of the underground river water height. The study site is a karst aquifer in 

the Jura Mountains (France). An underground river is accessible through an artificial shaft and 

is instrumented by a hydrological probe. The seismic noise generated by the river is recorded 

by two broadband seismometers, located underground (20 m depth) and at the surface. The 
algorithm succeeds in predicting water height thanks to signal energy features. Even weak 

river-induced noise such as recorded at the surface can be detected and used by the algorithm. 
Its efficienc y, e xpressed b y the Nash–Sutclif fe criterion, is above 95 per cent and 53 per cent 
for data from the underground and surface seismic stations, respecti vel y. 

Key words: Hydrogeophysics; Seismic noise; Machine learning; Time-series analysis. 
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 I N T RO D U C T I O N  

ater resource has become an essential environmental and societal
ssue due to the intensification of its exploitation and its vulnera-
ility to climate change (Drew 1999 ; Andreo et al. 2006 ; Green
t al. 2011 ). Drinking w ater suppl y relies mainly on groundwater
quifers, which are generally not directly discernible nor accessible
Chen et al. 2017 ; McDonnell 2017 ). This applies in particular to
arst aquifers, which are very heterogeneous in terms of perme-
bility : they are characterized by fast groundwater flows in open
onduits (underground rivers) and slow flows in the micro-fractured
ock matrix (Ford & Williams 2013 ). Since most karst aquifers are
naccessible, their monitoring often relies on punctual observations
rom piezometers or on spring hydrographs. In order to better un-
erstand these systems, it is therefore essential to develop new
onitoring approaches, adapted to their heterogeneous geometry

nd flow dynamics. 
The seismic wavefield has proved to provide information about

ydro geolo gical processes (e.g., Larose et al. 2015 ). Actually, the
ydrodynamics of surface rivers have been the subject of several
assive seismic studies. For example, the spectral analysis of the
mbient seismic noise induced by river flow has allowed to identify
C © The Author(s) 2023. Published by Oxford University Press on behalf of The Roy
ediment transport and deposition within stream segments (Burtin
t al. 2008 ; Schmandt et al. 2013 ). It has been shown that seismic
ecordings from geophones installed on the river bank could be used
o estimate river discharge (Anthony et al. 2018 ), water height and
edload transport (Dietze et al. 2019 ). Regarding groundwater, seis-
ic interferometry methods are ef fecti ve in detecting water level
ithin the rock matrix, through the measurement of seismic veloc-

ty changes in the subsurface (Voisin et al. 2017 ; Fores et al. 2018 ;
idal et al. 2021 ). Measuring hydro geolo gical parameters of un-
erground river, which are generally inaccessible, remains however
hallenging. 

Recent advances in research combining machine learning and
eismic monitoring have shown that it is possible to identify auto-
atically the sources of seismological events triggered by various

eolo gical processes. Actuall y, the Random Forest algorithm and
urated features have been successful in describing landslide micro-
eismicity (Provost et al. 2017 ; Wenner et al. 2021 ), differentiating
etween rockfalls and volcano-tectonic earthquakes (Hibert et al.
017 ), detecting debris flow events (Chmiel et al. 2021 ) and es-
ablishing seismic lithofacies classification (Kim et al. 2018 ). The
andom Forest algorithm can also be used to predict, in the ma-
hine learning term, continuous values. For example the method was
al Astronomical Society. 1807 
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Figure 1. Location map of the site and instrumentation. The underground 
river and the dry fossil galleries are drawn in blue and white, respecti vel y 
(topographical data are from D. Motte, ASDC). The red and pink dots show 

the positions of the seismic stations and the triangle the position of the 
hydro geolo gical probe (CTD). 
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applied on laboratory observations to identify hidden signals that 
precede earthquakes and predict the time remaining before failure 
(Rouet-Leduc et al. 2017 ). It was also applied to predict subsur- 
face porosity and capture its spatial variation in reservoirs based on 
seismic attributes (Zou et al. 2021 ). 

The objective of this study is to propose an innov ati ve approach 
based on a continuous application of the Random Forest machine 
learning algorithm on passive seismic wavefield to provide a remote 
inference of the water height of the underground river. In other 
terms, we propose to establish a projection of seismic data in a multi- 
dimensional feature space extracted using a 15-min-long sliding 
window to the output of 1-D water height values using the mentioned 
algorithm. This unprecedented application could be the head start 
in the investigation of other inaccessible water conduits towards a 
better groundwater estimation and flood forecasting. 

2  S T U DY  S I T E  A N D  DATA  

The study site is the Fourbanne karst aquifer in the Jura mountains, 
eastern France (Fig. 1 ). It is part of the JURASSIC KARST hy- 
dro geolo gical observ atory settled in 2014 (Cholet et al. 2017 ) and 
of the french SNO KARST network (Jourde et al. 2018 ). The local 
lithology is characterized by Middle Jurassic tabular limestones and 
shales cross-cut by a series of N-S and NE-SW normal faults, which 
control the orientation of the underground conduits. The aquifer is 
primarily fed by allogenic recharge through sinkholes (Cholet et al. 
2015 ). The underground conduit has been explored and mapped 
over a length of 9 km by speleologists in the unsaturated zone and 
by cave divers in the saturated zone. The location of the instru- 
ments as well as a part of the karst conduit are detailed in Fig. 1 . 
The seismological data are recorded by two stations of the long- 
term regional seismic network JURAQUAKE deployed in eastern 

France since late 2018 and 2019. The station AVEN is located in 
a fossil gallery at 20 m depth (423 m asl), at the base of a vertical 
shaft drilled by speleologists (Guralp CMG40T 60s-100Hz sensor, 
connected to a Staneo D3BB-MOB digitizer). The second station 
FONT is located at the surface (443 m asl), at 3 m from the well- 
head (Guralp 6TD, 30s-100Hz sensor). For coupling purposes both 
seismometers are dug 50 cm into the cave sediment or surface soil. 
AVEN and FONT are at a slope distance of about 50 m and 60 m 

from the underground river’s channel. The sampling frequency of 
these three component seismic stations is 200 Hz for AVEN and 
100 Hz for FONT. A hydrological probe (CTD) is installed in the 
river and records water electrical conductivity, water temperature 
and water height every 5 minutes. 

In this study, we focus on hydro geolo gical data recorded for 2 
years between 2009 September 15 and 2021 September 15 (Fig. 2 ). 
This period covers two entire hydro geolo gical cycles, with main 
rainy seasons in winter and spring. During this period, the CTD 

recorded a minimal water height of 0.4 m during low water periods, 
which is measured from the streambed to the water–air interface, 
and a maximum height of 1.7 m during floods. Seismological data 
are complete during this period of time at AVEN only. Due to 
technical problems, there are gaps in the data recorded at FONT 

and the analysis covers a shorter period of time: between 2019 
October 27 and December 31 and between 2020 September 15 and 
2021 September 15. Fig. 2 (a) is a plot of the underground river 
water height during all of the studied period. Fig. 2 (b) is a zoom 

on a flood occurring between 2019 November 16 and November 
20. Spectrograms computed from seismological data recorded at 
FONT and AVEN, during this same flood, are presented in Figs 2 (c) 
and (d), respecti vel y. Energy lines between 10 and 20 Hz appearing 
on both AVEN’s and FONT’s spectrograms can be related to the 
anthropo genic acti vity. Indeed, these energy lines are more marked 
for FONT than for AVEN due to its location underground, insulated 
from the surface, thus the river induced noise will appear on its 
signals’ spectrogram with a higher amplitude. Actually, we can 
notice at this frequency range a day-night variation with more energy 
during daytime, and less energy during days-off (November 17 is 
a Sunday). In addition, for the latter frequency range, more energy 
is manifested on the horizontal components than on the vertical 
component (Fig. A1 ). 

The seismic noise induced by the river becomes relati vel y visible 
on the spectrograms once the water rises. Due to the position of the 
seismometer, at the surface, in a field enclosing two horses, and the 
prominence of noise generated by anthropogenic sources (vehicles 
on the nearby road, dwellings, agricultural activities, mining) as 
well as the horses’ gaits, the effect of water height variation is 
hardly detectable on the FONT spectrogram (Fig. 2 c). The noise 
amplitude increase due to water height increase is clearer on the 
AVEN spectrogram, which is more isolated from the surface noise 
(Fig. 2 d). Actually, three main frequency ranges can be associated 
with water height change (Fig. 2 d): 1–3 Hz, 5–8 Hz and 25–50 Hz. 
While the low frequency bands (1–8 Hz) are visible before the flood, 
energy at high frequency seems to occur after the flood has started. 
The seismic noise related to water flow in rivers can be associated to 
different phenomena (Burtin et al. 2008 ; Tsai et al. 2012 ; Schmandt 
et al. 2013 ; D ́ıaz et al. 2014 ; Gimbert et al. 2014 ). A major source of
noise results from the frictional forces produced by the interaction 
between the turbulent flow and the riverbed. Another one is the bed 
load particles transport, generally observed at higher frequency. 

In order to look more in detail at the noise induced by the flood, 
w e ha ve plotted the noise amplitude against water height with a 
5 min time step for FONT (Figs 3 a–c) and AVEN (Figs 3 d–f). Data 
were filtered at 1–3 Hz, 5–8 Hz and 25–50 Hz, corresponding to the 
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(a)

(b)

(c)

(d)

Figure 2. (a) Hydrograph spanning the entire study period in terms of water height. The shaded part is the flood selected for the spectrograms computation. 
The tw o arro ws indicate the tw o hydro geolo gical cycles used for the training and application of the RF algorithm. (b) Hydrograph of the selected flood event 
in (a), between 2019 November 16 and 20. (c) Spectrogram of the vertical components during the selected flood for signals recorded at FONT and filtered 
between 1 and 50 Hz. (d) Same as (c) for AVEN. 
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hree frequency ranges evoked earlier. Similar trends are obtained
or the two stations. While the water height rises from 0.50 m to
.80 m and decreases below 0.80 m, the variation of the noise ver-
us the variation of water height follow the same path. In addition,
t all frequency ranges, between 0.90 m and the flood peak, the
oise amplitude as function of water height draws a hysteresis. The
atter is generally attributed to bedload transport during increasing
ooding (high noise amplitude), and gravel deposit during reces-
ion (lower noise amplitude), with lower frequencies corresponding
o larger particle movement (Burtin et al. 2008 ; Schmandt et al.
013 ; D ́ıaz et al. 2014 ). Gimbert et al. ( 2014 ) have also shown that
urbulence processes in the river could also significantly contribute
o the hysteresis curve. 

 F E AT U R E  E X T R A C T I O N  F RO M  

E I S M I C  DATA  

n this section the objective is to extract characteristic features from
he raw seismic data. Firstly, a pre-processing of the seismic data
as been performed. The data are decimated to 100 Hz (for AVEN
nly), and then detrended and filtered between 1 and 50 Hz. The
eismic signals are then partitioned using a 15 minutes moving win-
ow with an overlap of 50 per cent, corresponding to a windowing
tep of 7.5 min. Several window lengths were tested. A 15-min-
ong window was chosen because it requires reasonable CPU time
omputation and provides sufficient resolution for capturing the be-
inning of the rise of water during a flood event. Finally, features
f the seismic recordings are computed for each window (Table 1 ,
ee Hibert et al. 2017 , for a detailed description of each feature).
 total of 72 features are calculated related to the signals’ wave-
orm, frequency content, spectral energy, and pseudo-spectrogram.
imilar features as Hibert et al. ( 2017 ) are used in our study, except
or the polarity attributes, with additional frequency bands for the
omputation of the signal’s Kurtosis and energy (1–3, 3–5, 5–8, 8–
0, 10–15, 15–20, 20–25, 25–30, 30–35, 35–40, 40–45, 45–50 Hz).
hese frequency bands are chosen to cover all of the studied fre-
uency range (1–50 Hz) and target the bands affected by the water
eight variation obtained during the spectral analysis. These fea-
ures, as presented in Hibert et al. ( 2017 ), are commonly used to
dentify events or seismic sources within the seismic signals since
hey are able to cover several aspects of the signals. In the case of
he chosen configuration, the computation of features for a station
nd a year of data takes about 2 weeks of CPU time. The extracted
eatures are used in the algorithm that is explained in the following
ection. 

 M E T H O D  

he Random Forest (RF) algorithm (Breiman 2001 ) is a bagging
nsemble learning method based on the computation of a large
umber of decision trees. Each tree in the forest is generated from a
andom subset of events from the training set and a random subset
f features describing the events. The RF algorithm has two modes
f application: (1) the classification in which the final result will be
 class obtained from the majority of voting, and (2) the regression
n which the final result will be a value obtained by averaging
he predicted values given by each tree. Increasing the number of
rees in the forest helps in the convergence without causing over-
tting but reducing the generalization error (Breiman 2001 ), which

art/ggad160_f2.eps
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Figure 3. Noise amplitude as function of the water height for signals recorded at the surface station FONT and filtered between (a) 1–3 Hz, (b) 5–8 HZ and 
(c) 25–50 Hz. Same for underground station AVEN in (d–f). The color bar represents the time scale between 2019 November 17 and November 20. The white 
and black arrows correspond respecti vel y to the increase and decrease sections of the water height during the flood. 
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measures the prediction error of the model over the data set. Because 
of the random selection of both the training events and features, 
each decision tree in the Random Forest is unique and the trees 
are not correlated with each other that helps in reducing the over- 
fitting, which is one of the advantages of this algorithm. Another 
advantage is the ability of the algorithm to use a large number of 
features and assess their importance depending on the attributed 
case (water height in this study) in the prediction, while going from 

a multidimensional dataset to a 1D output. The importance of the 
features helps to better understand the results and provide insights 
on the link between the seismic signals features and the physics of 
the phenomena. 

Each decision tree of the RF consists of internal nodes (splits) 
and terminal nodes (leaves) (Criminisi et al. 2011 ). The depth of a 
tree is the number of splits from its root (node 0) to its leaves. It is a 
measure of the number of splits made by the tree to get a prediction. 
No limitation was set on the maximum depth in our model: the 
nodes are expanded until all leaves contain less than two samples 
in the population during the splitting. The deeper the tree, the more 
splits it has, hence more information will be caught from the data 
and configured into the model. At each node, the selected feature is 
used to split the selected subset of data into two separate populations. 
The best splitting value at each node is found by variance reduction, 
meaning the value of the feature at the split is the value giving the 
low est variance betw een the predicted (which is the mean value of 
each obtained population) and the real values, and thus yielding the 
highest precision. Feature importance is the assignment of a score 
to features based on their impact on the targeted prediction. The 
feature giving the lowest variance in the splitting is the feature with 
the highest importance and is chosen as a root node for the tree. 
The objective of the feature importance is to assess the influence of 
each feature on the model decision making in order to interpret the 
resulted predictions. Another objective can be to select important 
features for similar applications and gain in processing time. 

art/ggad160_f3.eps
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Table 1. Description of the features used in the algorithm (modified from Hibert et al. 2017 ). DFT and FFT stand for Discrete 
Fourier Transform and Fast Fourier Transform respecti vel y. 

Feature Description 

Duration Duration of the signal 
RappMaxMean Ratio of the Max to the mean of the normalized envelope 
RappMaxMedian Ratio of the Max to the median of the normalized envelope 
AsDec Ratio of the ascending to decreasing time of the envelope 
KurtoSig Kurtosis of the signal 
KurtoEnv Kurtosis of the envelope 
SkewnessSig Skewness of the signal 
SkewnessEnv Skewness of the envelope 
CorPeakNumber Number of peaks in the autocorrelation function 
INT1 Energy in the first 1/3 of the autocorrelation function 
INT2 Energy in the last 2/3 of the autocorrelation function 
INT RATIO Ratio of INT1 to INT2 
ESi-j Energy of the seismic signal in the i-j Hz frequency band 
Kurtoi-j Kurtosis of the signal in the i-j Hz frequency band 
DistDecAmpEnv Difference between decreasing coda amplitude and straight line 
RatioEnvDur Ratio between maximum envelope and duration 
MeanFFT Mean FFT 

MaxFFT Max FFT 

FmaxFFT Frequency at Max (FFT) 
FCentroid Frequency of spectrum centroid 
Fquart1 Frequency of 1st quartile 
Fquart3 Frequency of 3rd quartile 
MedianFFT Median of the normalized FFT spectrum 

VarFFT Variance of the normalized FFT spectrum 

NpeakFFT Number of peaks in the normalized FFT spectrum 

MeanPeaksFFT Mean peaks value for peaks > 0.7 
E1FFT Energy in the 1 – NyF/4 Hz (NyF = Nyqusit Frequency) band 
E2FFT Energy in the NyF/4 – NyF/2 Hz band 
E3FFT Energy in the NyF/2–3 ∗NyF/4 Hz band 
E4FFT Energy in the 3 ∗NyF/4 – NyF/2 Hz band 
gamma1 Spectrum centroid 
gamma2 Spectrum gyration radio 
gammas Spectrum centroid width 
SpecKurtoMaxEnv Kurtosis of the envelope of the maximum energy of spectrograms 
SpecKurtoMedianEnv Kurtosis of the envelope of the median energy of spectrograms 
Ratioenvspecmaxmean Ratio of the Max DFT( t ) to the mean DFT( t ) 
Ratioenvspecmaxmedian Ratio of the Max DFT( t ) to the median DFT( t ) 
Distmaxmean Mean distance bewteen Max DFT( t ) mean DFT( t ) 
Distmaxmedian Mean distance bewteen Max DFT median DFT 

Nbrpeakmax Number of peaks in Max (DFTs( t )) 
Nbrpeakmean Number of peaks in mean (DFTs(t)) 
Nbrpeakmedian Number of peaks in median (DFTs( t )) 
Rationbrpeakmaxmean Ratio between the number of peaks in Max (DFTs( t )) and mean (DFTs( t )) 
Rationbrpeakmaxmed Ratio between the number of peaks in Max (DFTs( t )) and Median (DFTs( t )) 
Nbrpeakfreqcenter Number of peaks in centroid frequency DFTs( t ) 
Nbrpeakfreqmax Number of peaks in Max frequency DFTs( t ) 
Rationbrfreqpeaks Ratio between the number of peaks in centroid frequency DFTs( t ) and Max frequency DFTs( t ) 
DISTQ2Q1 Distance Q2 curve to Q1 curve (QX curve = envelope of X quartile of DTFs) 
DISTQ3Q2 Distance Q3 curve to Q2 curve 
DISTQ3Q1 Distance Q3 curve to Q1 curve 
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An example of a tree of the forest resulting from the training
f a model with AVEN’s data with the maximum depth set at 3 is
resented in Fig. 4 . This maximum depth is only used to generate
his figure and to be able to visualize the functioning of a tree. A
ubset of features and data are selected for this tree. The features
re sorted according to their importance. At the level of each node,
ater height is plotted as a function of the feature corresponding

o the node. The feature corresponding to the energy of the seismic
ignal between 40 and 45 Hz (ES40–45), which represents the base
0 logarithm of the integral of the raw seismic signal’s envelope
ltered between 40 and 45 Hz, is the root of the tree since it is the
ost important feature. A splitting point for this feature is obtained
nd the population is divided into two sets accordingly, each set
aving its own mean water height that gives the lowest variance.
amples having this feature above the resulted threshold will be
elected at the right part of the tree, and below the threshold at
he left part. The next feature splitting the population will be less
mportant than the preceding feature. This is done at every node until
he maximum depth condition is fulfilled. The samples obtained at
ach node will be satisfying all the above conditions from all the
revious nodes of the tree.The final plots represent the water height
istribution at different time windows of the remaining samples after
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Figure 4. A tree diagram generated from a model using AVEN’s data with a maximum depth parameter set at 3. 
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the splitting. At the level of each final node is the number of samples 
obtained for the final split and the prediction of the water height, 
which is the average value of the water heights of the remaining 
samples. Given features corresponding to a certain signal, a water 
height will be obtained at each tree, and having 1000 trees the final 
prediction will be the mean of all obtained water heights. 

Unlike usual applications, the training and testing are here done 
on continuous signals (water height and seismic) and not on selected 
events. The process involves independent algorithms for each sta- 
tion (AVEN and FONT). The following steps include training on a 
certain period of time and testing on another period of time. The 
choice of these periods of time was controlled by data availabil- 
ity. The training period is the same for AVEN and FONT: from 

202 September 15 to 2021 September 15 (training dataset). The 
testing period (testing dataset) is from 2019 September 15 to 2020 
September 15 AVEN and only two months for FONT (from 2019 
October 27 to December 31). Hence the training dataset counts 70 
000 windows (of 15 min) for AVEN and FONT, and the testing 
dataset counts 70 000 windows for AVEN and 13 000 windows for 
FONT. The choice of training the algorithm on 2020–2021 data and 
testing it on 2019–2020 instead of the other way round is the lack of 
data for FONT; this choice allows to have firstly the data of a com- 
plete hydrological cycle for the training to cover all potential water 
heights and secondly a same training period for both stations for re- 
sults comparison issues. A RF with 1000 trees is then created based 
on the training dataset by assigning to each window of features the 
corresponding measured water height. A similar configuration was 
used as in Provost et al. ( 2017 ) and Hibert et al. ( 2017 ). The RF 

model was then applied on the testing dataset which generates an 
array of water heights. The predicted water heights are then com- 
pared with the real values in order to assess the algorithm precision. 
Finall y, to e v aluate which features are the most rele v ant, 10 forests 
were created and trained, each giving values for the features impor- 
tance. These values are then av eraged ov er the 10 instances. This 
number of instances was chosen since it is a reasonable choice in 
terms of CPU time, knowing that one instance of the algorithm can 
take several hours since we are using a year of data for the training 

of a 1000 trees forest. 
5  R E S U LT S  O F  T H E  R E G R E S S I O N  

The results of the regression analysis performed on data from sta- 
tions FONT and AVEN are presented in Fig. 5 . The predicted 
w ater height w as smoothed for both stations using a 10-day moving 
window to avoid short transitory signals coming from local noise 
sources. A good fit between observed and predicted values was ob- 
tained, as illustrated in Fig. 5 . In order to better assess the quality of 
the fit we calculated the overall Root Mean Square Error (RMSE) 
and the Nash–Sutcliffe efficiency coefficient (NSE) which is com- 
monly used in hydrological models (McCuen et al. 2006 ) and is 
gi ven b y: 

N S E = 1 −

T ∑ 

t = 1 
( H 

t 
0 − H 

t 
m 

) 2 

T ∑ 

t = 1 
( H 

t 
0 − H̄ 0 ) 2 

(1) 

where H̄ 0 is the mean of observed water heights, and H m is modeled 
water height. H 

t 
0 is observed water height at time t . For FONT, the 

obtained RMSE is about 0.1 m and the NSE is about 53 per cent. 
The prediction shows many outliers or misfits compared to the true 
w ater height v ariation. The misfits are mainl y observed during the 
recession period (e.g. beginning of December 2019; Figs 5 a and c). 
It is most likely due to the position of the station at the surface, at the 
vicinity of many major noise sources which tends to hide the noise 
generated by the riv er. Howev er, the ov erall shape of the hydrograph 
is correctly reproduced. For AVEN the quality of the fit is very high, 
with an RMSE of only 0.03 m and the NSE reaching 95 per cent. A 

few outsider peaks can be observed systematically during periods 
of flood recession : mostly from mid to end of 209 January, from 

2019 mid-March to end of April and from beginning of 2019 July 
to end of September. For these periods the predicted water heights 
fall mainly below and only punctually above the observed heights 
(Figs 5 b and d). In these cases, the seismic noise generated by the 
river most likely interferes with other noise sources. Figs 5 (c) and 
(d) show the predicted values of the water height versus the real 
measured values on a normalized scale for simulations done with 
FONT and AVEN, respectively. If the fit between predicted and 
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(a) (c)

(b) (d)

Figure 5. (a) Simulated water height at surface station FONT; the blue line is the water height measured at the CTD; the red line is the predicted water height 
obtained from the application of the algorithm on the seismological data. (b) Same as (a) for underground station AVEN. The dashed rectangle indicates the 
period of application in (a). (c) Predicted versus measured water height for simulations carried out at FONT; the blue line represents the 1:1 line. (d) Same as 
(c) for AVEN. 
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eal v alues w as perfect the y would hav e been aligned along the 1:1
ine. We observe that for both stations, most of the points are below
he 1:1 line, meaning that the predicted water height is lower than
he observed one. This could be due to the difficulty to predict the
ater heights during low water periods, when the induced noise

mplitude is lower. We also computed the Pearson coefficient ( R )
or both applications to measure the strength and direction of the
inear relationship between the predicted and observed values. As
xpected, the coefficient is high for AVEN (0.98) and lower for
ONT (0.70). 

 D I S C U S S I O N  

he features importance resulting from averaging scores over 10
nstances of training are presented in Fig. 6 . The most important
eatures retained by the algorithm are waveform and signal energy
eatures for both stations. In the case of FONT, the dominant feature
s the Kurtosis between 8 and 20 Hz (a plot showing the variation
f the kurtosis feature for signals filtered between 15 and 20 Hz
ompared with the water height is shown in Fig. B2 of the appendix).
n the case of AVEN, signal energy is the most important feature, for
requencies between 5 and 8 Hz and at high frequency (above 20 Hz),
specially between 40 and 45 Hz (a plot showing the variation of
he signal’s energy feature between 40 and 45 Hz compared with
he water height is shown in Fig. B1 of the appendix). 

The Kurtosis of the seismic signal is a common feature used
n many classification applications which allows detecting natural
r anthropogenic seismic events within continuous seismic records
e.g. Liang et al. 2008 ; Baillard et al. 2013 ; Ross & Ben-Zion
014 ). This may justify why this feature is the most important for
he FONT regression model. The position of this station at the
urface near roads and agricultural fields leads to the presence of
andom punctual peaks in the seismic signals thus causing an in-
rease in the kurtosis. Since we are using 15 min windows, multiple
e w-seconds e vents can be included leading to a flatter normal dis-
ribution and a higher kurtosis value, which can be detrimental to
he variation of the kurtosis with the w ater height. The ske wness of
he seismic signal is also a common feature used for event detec-
ion, especially seismic phase detection (Ma et al. 2015 ; K üperkoch
t al. 2010 ). Hence, it might also be affected in our case by an-
hropo genic e vents. We tested the algorithm without the kurtosis
nd the skewness features, which allowed improving the results
Fig. 7 ). 

The predicted hydrograph is smoother, presenting less misfits
nd similar RMSE (0.14 m) compared with the initial prediction.
he NSE is however smaller (13 per cent against 53 per cent). In-
eed, the amplitude of the floods are not completely recovered. As
entioned above, the Kurtosis feature is usually used for event de-

ection applications, hence its importance in the detection of floods
s well as the detection of transitory water height peaks during a
ood event. For example for the flood occuring between the 2019
ecember 20 and the 26 (Fig. 7 ), we can notice that the first peak

s correctly reproduced, unlike the following peaks, which are un-
erestimated. Applying the algorithm while removing the kurtosis
eatures at FONT allows to highlight the signal’s energy feature, in
articular between 1–8 and 20–30 Hz (Fig. 8 ). 

According to results at the two stations, the main feature of the
eismic noise use by the RF algorithm for simulating the water
eight is the signal energy. At both stations, these features exhibit
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Figure 6. Feature importance obtained by averaging scores over 10 instances of training and testing the RF algorithm for stations (a) FONT and (b) AVEN. 

Figure 7. Water heights simulated with FONT’s data after removing the kurtosis and skewness features; the blue and red lines correspond to the observed and 
predicted water height, respectively. 
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low and high frequency contents, at 1–8 and > 20 Hz, respecti vel y. 
As mentioned in section 2, hydrodynamic processes have a partic- 
ular spectral signature, which has been described and modeled for 
surface river (Burtin et al. 2008 ; Tsai et al. 2012 ; Gimbert et al. 
2014 ). Observed features are most likely related to these mecha- 
nisms : the low frequency band features would correspond to the 
turbulence, while higher frequency content ( > 20 Hz) could be due 
to bed load transport. 

Associated frequency bands are more widely distributed at FONT 

than at AVEN, which could be explained by their respective location 
(surface and 20 m depth) affecting their ability to capture river in- 
duced signals only. In addition, due to seismic attenuation, a station 
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Figure 8. Feature importance obtained by averaging scores over 10 instances of training and testing the RF algorithm for FONT without the kurtosis and 
skewness features. 
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loser to the underground river, such as AVEN, is able to record
igher frequency content, compared to a surface station such as
ONT. The channel morphology at Fontenotte is very heteroge-
eous (the river width can vary in terms of several meters) which
akes physical models developed for surface river (Tsai et al. 2012 ;
imbert et al. 2014 ) difficult to apply. Ho wever , bed load transport
odel developed by Tsai et al. ( 2012 ) and field observations pro-

ided by Burtin et al. ( 2008 ) indicate that the smaller is the distance
tation-river, the higher is the peak frequency. Our results corrobo-
ate this, with the second best feature being the seismic energy value
n the 25–30 Hz frequency band for the farthest station (FONT -
pproximate distance of 60 m) and the best feature being the seis-
ic energy fluctuation in the 40–45 Hz for the closest and deepest

tation (AVEN – approximate distance of 50 m). This highlights the
trong correlation between the seismic energy in those frequency
ands and the dynamics of the river, and hence explains the abil-
ty of the RF machine learning model to reproduce the hydrograph
rom seismic signals. 

One limit of the methodology presented here is the necessity of
aving hydro geolo gical data for the training. On the other hand,
nce the training is complete, no access is anymore needed to the
nderground river to do the maintenance of the hydrological probe
nd collect its data. In addition, the hydrological probe should be
nstalled a period long enough to cover all potential water heights
hat might occur. Indeed, the method is not able to predict water
eights that it was not trained for, in other terms it cannot extrapo-
ate. Further investigation to unravel this could be to use data at the
iver’s outlet, where the access is generally easy, in order to train
he RF and then test it at other positions on the conduit. 

Linear regression is a simple and efficient mean allowing to
imulate water height as demonstrated b y Anthon y et al. ( 2018 ),
ho used data from geophones located at the vicinity of the river

1 m from the stream). In this station configuration, the seismic
nergy is dominated by the noise induced by the river. This is not
he case when monitoring an underground river from surface, as
bserved at FONT where the river-induced signal is most likely too
eak and noisy to apply regression analysis. On the other hand,
achine learning method can detect the most rele v ant frequency

anges for performing a successful simulation, even for distant and
oisy stations. In fact, multiple features were re vealed rele v ant for
he regression, which shows the importance of this method in it’s
bility to deal with such datasets. 
Although the predicted hydrograph fits more correctly the ob-
erved values using data from a very high signal to noise ratio sensor
loser to the source (such as AVEN), the application of the method
sing data from the surface station is promising: the prediction
ts well the temporal evolution of the real water height permitting

he detection of floods as well as roughly estimating the corre-
ponding water height. Better regression for FONT can potentially
e obtained by improving the station insulation (e.g. FONT is only
uried at 0.5 m depth) which could enhance the signal-to-noise ratio
f the recorded signals. Further investigation could be performed to
etter characterize the effect of the geometry and the dynamics of
he river. An approach could be to test the algorithm with data from
 denser seismological array installed all along the river as well as at
he surface. Finally, the proposed method could be extrapolated to
ther accessible or inaccessible sites and implemented for real-time
pplications allowing a continuous monitoring of flood events in
rder to circumvent the installation of inv asi ve instruments. 

 C O N C LU S I O N S  

e used a Random Forest (RF) algorithm to predict the flow dy-
amics of an underground karstic river using seismological data.
eventy-two features characterising the seismic signals were com-
uted to train the model and predict the water heights. With an
MSE of 0.03 m obtained for the regression using the data col-

ected from the underground seismological station (AVEN) and of
.1 m using the data collected from the seismological station at the
urface (FONT), the RF model proved to be a reliable method for
emote monitoring of the water heights. Feature importance was
omputed in terms of variance between predicted and observed val-
es. The most important features correspond to the signal energy
or AVEN and FONT. They are related to the contribution of the
 ater-ri verbed interaction and the bed load transport on the seismic
oise content. The results demonstrate the accuracy of the method
n predicting underground river water heights, even with weak river-
nduced and noisy signals (the case for FONT). 
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DATA  AVA I L A B I L I T Y  

Data from the long-term regional seismic network JURAQUAKE 

and the JURASSIC KARST hydro geolo gical observ atory of the 
SNO KARST network were used in the creation of this manuscript. 
A description of the data and their access are found in https://www.fd 
sn.org/networks/detail/5C 2018/ for JURAQUAKE and https://soka 
rst.or g/en/9-obser vatories-in-fr ance/jur assic-karst-en/ for JURAS- 
SIC KARST. Figures were made with Matplotlib version 3.5, avail- 
able under the Matplotlib license at https://matplotlib.org/ . The map 
was created through QGIS3 available under https://www.qgis.org 
/f r/site/f or user s/download.html . The regression is done using the 
scikit learn library “RandomForestRegressor”. The Python code 
for the computation of the features is created by C. Hibert and 
modified by A. Abi Nader for this article and can be found under 
https://doi.org/10.5281/zenodo.6592237 . 

R E F E R E N C E S  

Andreo , B. et al. , 2006. Karst groundwater protection: first application 
of a pan-european approach to vulnerability, hazard and risk map- 
ping in the sierra de l ́ıbar (southern spain), Sci. Total Environ., 357 . 
doi:10.1016/j.scitotenv.2005.05.019. 

Anthony , R.E. , Aster, R.C., Ryan, S., Rathburn, S. & Baker, M.G., 
2018. Measuring mountain river discharge using seismographs em- 
placed within the hyporheic zone, J. Geophys. Res.: Earth Surf., 123 . 
doi:10.1002/2017JF004295. 

Baillard , C. , Crawford, W.C., Ballu, V., Hibert, C. & Mangeney, A., 2013. 
An automatic kurtosis-based P- and S-phase picker designed for local 
seismic networks, Bull. Seism. Soc. Am., 104 (1), 394–409. 

Breiman , L. , 2001. Random forests, Mach. Learn., 45, 5–32. 
Burtin , A. , Bollinger, L., Vergne, J., Cattin, R. & N áb ělek, J.L., 2008. Spec- 
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A P P E N D I X  B :  T E M P O R A L  E V O LU T I O N  O F  F E AT U R E S  

Figure B1. Water height recorded for the hydrological cycle used for the training and the signal’s energy feature between 40 and 45 Hz for the signals recorded 
at AVEN and FONT during the same cycle. 

Figure B2. Water height recorded for the hydrological cycle used for the training and the signal’s kurtosis feature between 15 and 20 Hz for the signals 
recorded at AVEN and FONT during the same cycle. 
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