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A B S T R A C  T

Occupants’ movements and presence are fundamental and the pre-requisites for any type of occupant behaviors’ understanding which tells whether a building 
location is occupied, the number of occupants or an occupant with a specific profile in a certain location. Numerous studies have been conducted over the past few 
decades to model occupant behaviors stochastically for an improved understanding of their activities for different facility management applications. Despite many 
research efforts to model dynamic behaviors of building occupants, the understanding of their behaviors by incorporating the contextual information linked to the 
evolution of the building environment is still not adequately explored. The contextual information linked to locations in dynamic environments changes often over 
time in terms of position, size, properties and relationships with the en-vironment. This changing building environment affects the occupants’ movements and 
presence inside the fa-cility which ultimately degrades the process of inferring their accurate activities based on the location context. Henceforth, the evolving 
building information is required to be mapped with occupant movements for an im-proved understanding of their changing behaviors. To fill this research gap, a 
framework named ‘Occupant Behaviors in Dynamic Environments’ (OBiDE) is designed for providing a ‘blueprint map’ to integrate existing DNAS (Drivers, Needs, 
Systems, Actions) ontology (i.e. a scheme to model occupant behaviors) with our se-mantic trajectory enrichment model to better understand the occupant behaviors 
by tracking the dynamicity of building locations. The proposed framework extends the usability of DNAS by providing a centralized knowledge base that holds the 
movements of occupants with relevant historicized contextual information of the building environment to study occupant behaviors for different facility management 
applications.

1. Introduction

Occupants are the important factor for building monitoring and
management operations as they impact the building environments in
terms of heat production as well as through energy consumption by
operating the building appliances [1]. For ensuring an appropriate level
of quality of services to the building occupants, the most crucial chal-
lenge faced by the facility managers is to understand the occupant
behaviors and their interactions with buildings [1,2]. Although, this is a
complex activity because the occupant behaviors and the buildings are
dynamic in nature and context-dependent. Here, a context refers to any
information based on the contextual factors such as space, time and
environment utilized for categorizing the situation of occupants [2,3].
Failure in understanding occupant behaviors because of inadequate
integration of all relevant contextual factors associated with the occu-
pants and the building environments can result in serious economic and

administrative crises such as under-utilization of the building spaces,
decreased efficiency of occupants due to poor environmental condi-
tions, increased energy usage, and safety-related hazards [1–4]. On the
contrary, if the occupant behaviors are modeled effectively by including
all the possible contextual factors (functionality of the building loca-
tions, social-personal, economic, etc.) which may affect occupant be-
haviors will lead to an enhanced physical comfort, increased safety at
work and improved work performance of the occupants while keeping
the level of building resources to the optimum [1,5]. Existing literature
[4–9] encompasses many studies for constructing systems for modeling
occupant behaviors which help facility managers in decision making for
building operations by stochastically modeling the dynamic behaviors
of occupants after incorporating the random variations in their beha-
viors over time. Despite such numerous existing studies, the develop-
ment and application of such systems are missing in the literature
which can track the changes occurring in a building during its lifecycle
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and can be used to study occupant behaviors (movements and their
interactions with the building) using the evolving contextual informa-
tion of the building environment. To fill this research gap, initially
existing occupant behavior systems were reviewed for defining the
occupant behaviors which resulted in choosing a DNAS ontology [4]
based on its relevance to our case-study and application as well as its
acceptance that is perceived from its citations. A DNAS ontology has
four components which are; 1. the ‘drivers’, 2. the ‘needs’, 3. the ‘ac-
tions’ which building occupants perform to fulfill their needs and 4. the
‘systems’ through which the occupants interact with a building for
performing actions to fulfill their needs. Although, the application of a
DNAS ontology [4] is primarily explored for energy-related occupant
behavior modeling in the existing literature. However, this ontology
can be treated as a foundation to represent other types of occupant
behaviors in buildings as it provides a basic structure to represent be-
haviors using four core components as discussed above. For instance, in
our proposed framework (i.e. OBiDE), a DNAS ontology is used for
defining the safety-related occupant behaviors. For understanding the
occupant movements (the pre-requisite for any kind of behavioral un-
derstanding) with the evolving building context [10], the dynamicity of
a building environment in terms of geometrical and contextual in-
formation is achieved using our ‘Semantic Trajectories in Dynamic
Environments’ (STriDE) model [3,11]. The STriDE is a semantic en-
richment data model based on ontologies which aims to provide a
centralized knowledge base that holds the spatio-temporal movements
of occupants with relevant historicized contextual and geometrical in-
formation of the building infrastructure [11]. For an improved under-
standing of occupant behaviors by decoding and classifying their dif-
ferent types of movements, the stored occupant spatio-temporal data is
later fed to a probabilistic model (i.e. Hidden Markov Model) for in-
ferring their movement states [12]. The computation of probabilities of
different movements of occupants in terms of evolving building loca-
tions is used for enriching a DNAS ontology for an enhanced under-
standing of occupant behaviors by categorizing their actions based on
their movements for our safety management application. The case-
study dealing with the occupants’ safety management scenario is purely
to show a proof-of-concept application of our OBiDE framework.
However, the proposed framework can also be used for different facility
management scenarios where there is a need to fuse occupants’ move-
ments and presence data with the evolving geometrical and contextual
information of buildings.

The rest of the paper is organized as follows: Section 2 describes the
background of the study. First, it defines the occupant behaviors.
Second, it describes the main steps involved in occupant behavior
modeling. Third, existing occupancy detection techniques are explored.
Lastly, the importance of fusing the dynamicity of building environ-
ments with building occupancy information is stated. Section 3 is based
on the proposed integrated framework. Section 4 presents a brief case-
study using the proposed framework. Section 5 presents a discussion
and Section 6 describes a conclusion with some future works.

2. Background

2.1. What are occupant behaviors?

Behaviors are observable actions or reactions of a user in response
to external or internal stimuli [1]. These actions or reactions can be
categorized into four main types which are; physiological adjustments
(e.g. sweating, shivering, etc.), individual adjustments (e.g. selection of
clothes, using earplugs, etc.), environmental adjustments (HVAC ad-
justment, window opening or closing, etc.) and spatial adjustments
(moving from one building facility to another, etc.) [1]. In other words,
behaviors are the interactions (leaving or entering a room, visual and
thermal indoor conditions adjustment using windows or blinds, doors,
etc.) of building occupants which can be categorized into different
movements, simple presence or actions with their environment

(building, its systems and appliances) which impact on the building
performance (heating or cooling, indoor air quality, energy, comfort,
etc.) during their stay in a building [2]. Thereby, an occupant inter-
action which results in changing a building state (presence or absence
in case of occupancy monitoring) or no interaction leaving the present
state of a building unchanged are both facets of occupant behaviors [1].
Existing literature contains numerous systems to model occupant be-
haviors shown in Table 1. For modeling the occupant behaviors and
their interactions with the building, the occupants’ movements and
presence are the preconditions for any kind of behavior understanding
as building occupants can only interact with the building environment
if they are present inside the building [5,11].

2.2. Occupant behavior modeling

Primarily, there exist four major types of approaches to model oc-
cupant behaviors which are: static-deterministic, static-stochastic, dy-
namic-deterministic and dynamic-stochastic [1,2,4,5]. The static
models do not have the ability to capture the influences that a building
and its occupants can have on each other [5]. These models are de-
signed for understanding non-adaptive behaviors e.g. turning off the
lights when occupants are going for a holiday, etc. Conversely, dynamic
models deal with two-way interactions between a building and its oc-
cupants and are suitable for adaptive nature of occupants’ behaviors
e.g. turning on the lights, changing the heating or cooling of a building,
etc. Deterministic models produce the same outcomes every time when
a simulation is run and give the homogeneous and deterministic results.
Whereas, stochastic models produce different output every time when a
simulation is run because the modeling parameters are selected ran-
domly [5]. Among all the approaches discussed above, the modeling
approach which has been used extensively in the industry is static-de-
terministic modeling [1,5]. However, this modeling approach is not
suitable for constructing a robust building design as the uncertainty of
occupants’ behaviors is not considered. To include the uncertainty of
the building occupants’ behaviors, stochastic models are recommended
[5].

The three types of most commonly used stochastic models are; (1)
Markov chain models, (2) Bernoulli models and (3) survival models [5].
Discrete-time and discrete-event are the two main types of Markov
chain models which take into an account the environmental conditions
for predicting occupants’ actions in the latest timestep or an event [5].
The major limitation of Markov chain models is that they are not fea-
sible to apply to the entire population of occupants as the computation
and modeling effort increases linearly as the number of occupants in a
building increases. In contrast to Markov chain models, Bernoulli
models are the most simplified memoryless stochastic models in which
the probabilities of events are independent of the previous events [5].
Hence, Bernoulli processes do not require much information for mod-
eling occupants’ behaviors. Bernoulli modeling is used for energy
modeling at a large scale as its scope can be efficiently applied to the
entire building [5]. However, Bernoulli processes do not output in-
dividual occupant behavior and are not capable of predicting the tim-
ings of individual occupant's behaviors. The third type of modeling
approach i.e. survival modeling is used for estimating the time duration
until an event occurs in a building. For example, these models are used
for estimating how long a building probably remains unchanged by its
occupants [5]. In addition to three basic types of modeling approaches
as discussed above, there exists an extension of the Markov chain
models which use agent-based modeling. Agent-based models predict
the influence of occupants by modeling individuals, their mutual in-
teractions and how they interact with their building environment [5].
In agent-based modeling, a huge amount of information (i.e. defining
role and relationships between the agents) is typically required and thus
increases the modeling complexity. The term complexity is defined as
the number of details required for modeling which is dependent on size
(number of model components) and a resolution (number of model

M. Arslan, et al.

3



variables) [1,5]. An agent's description generally consists of their at-
tributes, resources, behavioral rules, etc. An extensive range of human
agents present in the literature which include agents subject to re-
inforcement or belief-based learning, non-adaptive agents, and agents
with capabilities of evolving new behaviors [5].

After selecting the most appropriate behavior modeling approach as
per the application requirements, to create the understanding of the
occupant interactions, the modeling process conventionally initiates
from the sensor data acquisition of occupants [1,5] along with the
building environmental or infrastructural parameters. The methods for
collecting occupant behaviors can be divided into three main cate-
gories, which are; 1) physical acquisition which can be a) on-site data
collection or laboratory studies in controlled environments, 2) surveys,
interviews and focus groups, and 3) virtual reality experiments [5].
Physical acquisition studies involve monitoring building occupants in
their physical environment. This environment can be an actual site
where the occupants are present or a pre-fabricated environment in a
laboratory setting that is controlled for a specific time to investigate the
occupant behaviors. However, laboratory studies are expensive to build
and may infer the behaviors differently as in real buildings the stress
level of the occupants is higher [5]. Moreover, the visibility of mon-
itoring sensors installed in laboratories makes occupants conscious that
they are been monitored which ultimately constrains their behaviors
[5]. Surveys and focus groups depend on the self-reporting of individual
behaviors by filling out the questionnaires or through interviews. This
method is cost-effective and enables to acquire behaviors which are not
possible to measure using sensors (for instance; perception, attitudes,
etc.). However, existing studies [5] show that reported behaviors of
building occupants may not always correlate with their actual beha-
viors. In addition, misunderstanding of the questions in the surveys may
also lead to incorrect reporting the information about the occupants
[5]. Apart from these two traditional approaches, the most emerging
approach for occupant behavior modeling is virtual reality-based en-
vironments. This approach provides greater control of the environment
in terms of environmental conditions (e.g. building layouts). However,
there is limited support for visual and air quality configurations [1].

An extensive range of different types of sensors (wired and wireless)
for monitoring occupants and the environment are present in the lit-
erature [1–5] to acquire information for modeling occupant behaviors
and their interactions (energy consumption, etc.) with the buildings.
Some of them are mentioned below.

• Mechanical sensing such as door badges, piezoelectric mats, etc.

• Image-based sensing using visual information captured from the
cameras.

• Motion-based sensing such as passive infrared (PIR), ultrasonic
Doppler and ultrasonic ranging sensors

• Manual observations need humans for collecting datasets

• Wireless RF sensing using ambient sensors for temperature, hu-
midity, light, etc.

• Consumption sensing for measuring water, electricity and gas usage
in buildings

For selecting a sensor technology for data acquisition, there exists
nine factors [1,5] which needs to be considered which are; 1. cost
(including acquiring, installing and operating cost of the sensors), 2.
power type (battery or main powered), 3. accuracy (difference between
sensed data values and ground truth), 4. sensor coverage range (dis-
tance and a view angle the sensors cover), 5. data collection type
(event-based or periodic), 6. data storage (onboard storage of sensors),
7. deployment region (building inside or outside), 8. deployment level
and 9. data sensed (binary data or value-based sensing). The quality of
data captured from various types of sensors differ greatly in terms of the
resolution of the deployed sensors (see Fig. 2). The spatial, temporal
and occupant resolutions are combined for determining the overall
resolution of the system for capturing the occupant behaviors [1,5]. The

spatial resolution is defined in terms of building infrastructure (i.e.
floor, rooms). Whereas occupant resolution can have 4 different levels
of information which are; 1) simple detection based on the occupant
presence in 0 or 1 values, 2) counting the number of occupants, 3)
identifying the occupants, and 4) recognizing the occupants’ activities.
Along with spatial and occupant resolution, temporal resolution defines
the smallest time period in which variations in spatial and occupant
resolutions can be informed by a deployed sensor. As the resolution of
the captured sensor data increases, the building space gets smaller, the
occupants become more distinct based on their identities and the in-
formation from the sensor data will be accessed faster [1]. For example,
a low-resolution system will only capture the binary information (pre-
sence or absence) of the occupants in a specific time where the iden-
tities of the occupants are not recognized. Whereas, a high-resolution
system will be able to detect the number of occupants, their identifi-
cations, as well as their activities.

2.3. Occupancy detection techniques

While the previous section provides a brief overview of different
types of sensors available for capturing different occupant behaviors,
but occupants’ movements and presence are the pre-requisites for any
type of occupant behaviors’ understanding. Existing studies on occu-
pancy detection and proximity analysis have been dominated by a wide
range of sensors including passive infrared, Radio-Frequency
Identification (RFID), ultrasonic, acoustic recognition, image cameras,
Wi-Fi-based, Global Positioning System (GPS) and Bluetooth Low
Energy (BLE) technology [38]. Each technology has its own advantages
and disadvantages which can be found in Huang et al. [38] research.
The output of a passive infrared sensor is binary and used for detecting
the occupant presence instead of calculating the precise number of
occupants in a facility [39]. RFID-based sensors are conventionally used
for calculating course-grained locations and occupancy [40]. Though,
as each RFID tag is mapped with an occupant, the privacy of an occu-
pant is the main concern while using this technology [38]. Occupancy
detection using ultrasonic technique presents several disadvantages
such as complexity in sensor configuration and management [41].
Audio-based occupancy monitoring is inexpensive as the main equip-
ment that is required consists of only microphones with micro-
controllers. However, acoustic-based sensors are seldom used for

Fig. 1. Occupancy resolution [1,5].

Fig. 2. Entities of a dynamic building environment.
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occupancy monitoring as non-human sourced sound waves originating
inside the noisy buildings can generate many errors in the collected
occupancy data [38]. Image cameras are also used for monitoring the
building occupancy and estimating their locations in a building [42].
However, the restrictions in the line-of-sight image collection introduce
an increased complexity in deploying the cameras inside the building to
cover all the possible room locations. Moreover, the expensive hard-
ware for cameras and the issues related to occupant privacy have cri-
tically degraded its acceptance and deployment [38,42]. In recent
years, Wi-Fi-based proximity sensors are used extensively for calcu-
lating the indoor occupancy number [43,44]. While using this method,
the Wi-Fi network is mandatory in all locations inside a building. In
addition, each occupant needs to carry a Wi-Fi enabled device all the
time. If the occupants leave their devices in the offices and go to some
other places. The Wi-Fi-based sensors will calculate the occupants’
positions of their devices but not their actual locations [38]. The errors
in calculating the precise occupancy and location detection can arise in
this case. Most smart devices include a GPS antenna that is used for
locating the positions of their owners. However, the performance of
GPS-enabled devices degrades severely inside the buildings because of
the signal interferences caused by the building objects [45]. As a result,
Bluetooth-enabled beacons came into the application for capturing the
movements of users for indoor building environments and have been
used widely in recent studies [3,12,46].

2.4. Need for incorporating the dynamicity of building environments

After an extensive review of existing applications of occupant be-
havior modeling [13–37], it is observed that numerous systems have
been developed to understand occupant behaviors. Each system is de-
veloped after conducting different types of measurements (real site or
laboratory) and surveys that focus on incorporating different model
variables (e.g. physical, biological and environmental) and human
factors for representing different occupant behaviors (e.g. movements,
occupancy, body postures, etc.) for different applications of facility
management with respect to different types of buildings (residential,
commercial, etc.). Consequently, the existing systems for understanding
occupant behaviors cannot be compared to one another as each system
has unique functionality and scope of inferring the actions using the
sensory data is limited to the application. However, Hong et al. [4]
provided a DNAS ontology, which acts as a technical framework to
standardize the major components (drivers, needs, actions, and sys-
tems) required to model occupant behaviors. A DNAS ontology pri-
marily aims to model energy-related occupant behaviors. However, the
features which were observed fundamental in DNAS and most of other
developed occupant modeling systems are occupants’ movements and
presence. In fact, the occupants’ movements and presence are con-
sidered as the prerequisites for any kind of behavior understanding as
building occupants can only interact with the building if they are pre-
sent inside the building [5]. Existing systems in the literature are built
by capturing the stochastic and reactive nature of occupant behaviors to
model their movements and presence in buildings. Ultimately, these
systems contribute to enhancing the understanding of occupant beha-
viors by increasing the occupancy resolution (i.e. inferring different
occupant activities using their movements and presence) for different
building monitoring and management applications. However, the ex-
isting systems for occupant behavior modeling do not incorporate the
information of complex dynamic environments where the building
objects (occupants and building locations) evolve over time (see Fig. 2).
With the passage of time, the functionalities of the locations in a
building often change (i.e. change in semantics or a context) [3]. For
example, a room named ‘inventory’ in a building is now an ‘office’
having different functionality. Likewise, due to the placement of certain
inventory on a specific area of a building, the floor area of a building (a
set of rooms and a corridor) became a ‘restricted area’. In addition, new
walls or infrastructure support may be added in a building [3,11]. This

will result in a change in the dimensions (i.e. geometry) of building
locations (called as spatial changes). The change in the semantics of
building locations occurs often in constructed facilities whereas, the
spatial changes take place rarely [3]. Such changes need to be in-
corporated in occupant behavior modeling as a change in the purpose
or a position of building locations will result in different behaviors of
occupants which ultimately represent different occupant activities [11].
The updated spatial and semantic information about the building lo-
cations along with the previous information will contribute to an im-
proved understanding of occupant behaviors with respect to the
changes occurred in the building environment [3]. Resulted occupant
behaviors after modeling the dynamicity of the building environment
can be used for different construction and built environment applica-
tions [11] such as; construction resource monitoring for improved
safety, managing building spaces based on their utilization, im-
plementing occupant access control system, etc. To address these re-
quirements of dynamic building environments which contain evolving
building objects, we have used our ontology graph-based STriDE model.

3. OBIDE framework

The proposed integrated framework as shown in Fig. 3 describes
occupant behaviors using a DNAS ontology [4] having four major
components which are drivers, needs, actions and systems. Drivers re-
present the factors which stimulate an action to be performed by oc-
cupants in a building environment. Needs are the requirements (phy-
sical, non-physical) which should be met of occupants in a building to
acquire the desired satisfaction. Actions are the interactions or move-
ments of occupants in a building to achieve a certain level of comfort.
Systems represent a building and its equipment through which the
occupants interact with the building. More information on a DNAS
ontology can be found here [4]. After describing the occupant beha-
viors which need to be modeled, a process of data acquisition takes
place to enrich a DNAS ontology with more information required for
modeling the occupant behaviors. The additional information is linked
with the actions of the occupants which is conventionally collected
using different sensors. The type of sensor data and the method using
which the data is acquired for modeling the behaviors after enriching a
DNAS ontology is completely dependent on the type of application as
discussed in Section 2(b). However, for each case-study, occupants’
movements and presence are the pre-requisites for any kind of actions
which will lead to behavior understanding of occupants as occupants
can only interact with the building environment if they are physically
present inside the building [5]. If the occupants’ movements and pre-
sence are modeled correctly, this will increase the occupancy resolution
of the model which ultimately helps to infer occupant activities with
higher accuracy [1,3]. Keeping this minimum level of modeling as a
foundation, the STriDE model is used to incorporate the dynamicity of
building environment to better understand the occupants’ movements
(actions) which can later help to infer occupant activities. The STriDE
models the building environment as a collection of different building
objects (entities). In our case, we have three building entities which are
1. a trajectory (corresponds to occupant location i.e. spatio-temporal
point), 2. a location (a physical building location) and 3. an occupant.
Each building entity evolves over time under the action of different
processes. The life cycle of each building entity is summed up into a
series of different states. Each state represents a change in the entity. As
shown in Fig. 2, a change can occur in the location, geometry or the
semantic (thematic) attributes of a building entity [3,10].

The different changes in building entities as mentioned above can
occur independently or simultaneously in a building environment. The
‘concepts’ are defined in a data model for tagging the building locations
with spatio-temporal trajectories of occupants. The data model [11]
uses a set of classes and properties from the existing vocabularies for
defining the concepts and their relationships which are; 1. Simple
Knowledge Organization System (SKOS), 2. Dublin Core Terms (DCT)
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and 3. GeoSPARQL (GEO). Using these vocabularies, the concepts are
defined and stored in the ‘concept scheme’. A concept scheme is a
collection of different concepts defined as a hierarchy which correspond
to different building locations [12]. The purpose of defining as a hier-
archy is to be more precise about the tagging of building locations to
spatio-temporal trajectories of occupants [3]. Using a set of different
concepts, occupant profiles are created to define the access level of the
occupants. For identifying the occupants, the tagged concepts with the
occupant trajectory's timeslices (TSs) are compared with the allocated
concepts as per their profiles. To model the building environment, the
STriDE model keeps track the building entities (see Fig. 2) as well as
different relations among them which are;

• the spatial relation; specifies how an entity is in a building in a re-
lation to a reference entity (a room). For example, an entity A (i.e.
an object) passes through entity B (i.e. a location) or the geometries
of entities A and B overlap each other or touch at a specific point in a
building.

• the spatio-temporal relation; specifies how building entities (two
rooms, or a room and an occupant) are related to each other at the

same time.

• the filiation relation; specifies how building entities are related by
ancestry or successor [10]. It defines the succession links which exist
between several representations of the same entity at different time
instants.

The data model deals with two types of filiation relationships [10]; a
continuation (an identity of a building entity remains the same while an
entity changes) and a derivation (after a change a new building entity is
created from the parent entity). For tracking the evolution of building
entities (occupants, trajectories and rooms) and their relations with one
another, the model uses the concept of TSs. A TS includes four com-
ponents which are; an identity, alphanumeric properties (semantic
component), a geographical (spatial) and a time component [3,12]. At
the occurrence of a change in any component of a TS excluding the
identity, a new TS is generated inheriting the components of the last
known TS. To show how our model keeps tracking the evolution of
dynamic building entities (location, trajectory, and occupant) using
TSs, three possible scenarios are described which are;

Fig. 3. Generalized OBiDE framework.

Fig. 4. Building room with its information in a data model.
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1. The functionality of a location is changed (a geographical component); A
building room named: Office having a size of 24m2 as shown in
Fig. 4. The room is tagged as an Office in a model having a defined
geometry. After a while, a building room named: Office is now a
general Room having a same geometry of 24m2 and tagged as Room
with a help of a new TS Room11 in a model having the same geo-
metry as of Office. The transition between an Office to a Room is
stored using a filiation link as shown in Fig. 5.

2. The geometry of a building room is changed; A building room named:
Room has now a size (geometry) of 28m2. A new TS is created with
a name of Room11 to hold this change in geometry. The change in
the geometry between an Office to a Room is stored using a filiation
link as shown in Fig. 6.

3. The creation of a new building room; Let's suppose, a room labeled
Office is demolished. A new room i.e. Room2 is created as shown in
a building model created in Revit Architecture software by
Autodesk. A Revit software is used for creating the three-dimen-
sional model of a building [12,47]. A room in Revit is represented
using a three-dimensional volume space. A Revit room can be cre-
ated by going to room tools located on the ‘room and area’ panel in
Revit software (see Fig. 7). Later, this newly created room is labeled
by placing the room tag associated with it as shown in Fig. 7. As a
building room named: Office is destroyed (see Fig. 8a and b). In-
itially, its TS Room10 is updated by changing its end date-time
stamp to show that a room is no longer exists (see Fig. 8c). Also, two
new TSs are constructed which are Room20 and Room30 to show the
construction of the two rooms having different geometries (see
Fig. 8d). For this case, new rooms are created which are linked to
the previous room. Therefore, filiation links are used.

The OBiDE framework aims to add the dynamic context to occupant
behaviors’ modeling process as context (details about building space,
time and environment) should be closely linked with the occupant
movements for an enhanced understanding of their actions. After
creating a knowledge base of historized movements of occupants using

the STriDE model by tracking the evolutions occurring in the building
environment, an appropriate modeling technique as per application
requirements (agent-based or conventional) can be applied to the
movements for calculating the probabilities of different actions of oc-
cupants across different building locations. A critical question here is
the degree of detail about occupants and the environment which should
be included in the modeling stage to attain the targeted understanding
of occupant behaviors. These details include occupant profiles, the type
and the number of buildings, and the required temporal (e.g. hours,
minutes, seconds) and spatial resolutions (e.g. floors, rooms). Our data
model can execute an access control system after creating different
occupant profiles with the help of concepts as described above. Also,
the STriDE model can hold data of multiple buildings with the help of
OpenStreetMap (OSM) building files for tagging updated building lo-
cations to spatio-temporal movements of occupants. Moreover, for the
modeling of occupant trajectories, the temporal resolution is kept
maximum i.e. seconds, whereas the spatial resolution is kept to rooms.

Understanding occupant behaviors is a complex phenomenon. It not
only involves the process of tracking movements with their dynamic
context and computing the probabilities of their different actions inside
the building that is one of the pre-requisites of any kind of behavioral
analysis but also needs to incorporate several external factors (e.g.
weather information, data from building management and monitoring
systems, etc.) to study occupant behaviors in more detail by extracting
insights about occupant activities from their actions. However, a scope
of the proposed framework is kept limited to include dynamicity of the
building environment into occupant movements and presence by en-
riching a DNAS ontology (particularly actions) which can help to infer
occupant activities for different facility management applications.

4. Application of proposed framework

The proposed framework (see Fig. 3) requires sensory data to in-
clude context to occupant movements and presence for performing
behavioral analysis. The acquisition of relevant sensor data is based on

Fig. 5. The functionality of a building room is changed.

Fig. 6. The geometry of a building room is changed.
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the application requirement. For example, the safety manager of a
building requires to monitor the movements of the occupants in a
building. In this case, using our OBiDE framework (see Fig. 9), ‘driver’
is monitoring movements of occupants, ‘need’ is achieving safety
management in a building by identifying unsafe movements, ‘action’ is
tracking movements of occupants using their spatio-temporal trajec-
tories, ‘system’ corresponds to Bluetooth Low Energy (BLE) beacons for
sensor data acquisition deployed in a building and ‘states’ are 1) static

(no movement), 2) normal movement (0 < steps≤ 84 and π/
2≤ angle < π) and 3) risky or unsafe (steps > 84 angle≥ π). Ex-
isting studies [11,12,48–50] suggests that the movement behavior of an
occupant can be defined if the values of step lengths and turning angles
are calculated for each two successive trajectory data points. The
average walking speed of a person range from 1.0 to 1.6 meters per
second (m/s) [49]. Keeping an indoor environment into account, a
value of 1.4m/s as a safe walking speed limit that will give us 84 steps

Fig. 7. Creating a room (top row) and tagging a room with a label ‘Room 2’ in a Revit software (bottom row).

Fig. 8. Storing the information of newly created building rooms in a data model.
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per minute i.e. the sum of step lengths for a minute.

4.1. Data collection and pre-processing

For understanding movement-based behaviors for a safety man-
agement application, around 200 BLE beacons by Kontakt.io were in-
stalled on different building locations (see Fig. 10). The cost of each
beacon ranges from 10 to 20 euros [17] and is dependent on the size of
the area which needs to be monitored. The deployment plan of the BLE
beacons is created using software for covering each building location
with a range of at least three beacons by restricting each beacon's signal
strength to 5 meters. Approximately 8426 location coordinates (see
Table 2 for buildings’ information and Table 3 for a dataset description)
were collected across different locations using deployed beacons. After
sensor data acquisition, the acquired location data is transformed into
trajectories after preprocessing (i.e. filtering).

4.2. Analyzing the positioning errors

After preprocessing the spatio-temporal trajectories (see Fig. 11)
collected from the BLE beacons, the process of calculating the accuracy
of identifying the correct building locations using the building in-
formation residing in our data model is executed with the help of
queries. The queries were executed for extracting certain user move-
ments which were not correctly acquired by the system.

For instance, at time =t 1, a user was in Room256. Whereas, at
=t 2 a user is in Room206 (see Fig. 12). Though, these two building

locations are not physically connected as observed using building
model information. By considering the sampling interval of a trajectory
data i.e. 5 seconds, it is not possible to have such fast user movement
between two building locations which were not connected. The accu-
racy of identifying the correct locations by the BLE beacons was around
90% (see Table 4).

Few locations were not identified correctly because of indoor in-
terferences caused by the building objects and people which resulted in
inaccurate recognition of the building locations. Closer investigation
[51] to trajectory data revealed that inaccuracies in the system majorly
caused because of below reasons;

1. Terminating the mobile application for capturing the BLE beacons
signals and relaunching it from other building locations transmitted
the geographical coordinates of the previous locations. The is typi-
cally resulted because of a delay in the location detection and the
transmission of the acquired trajectory geographical coordinates to
the server.

2. Few beacons might have fallen from their original positions. These
beacons were later mounted to the incorrect places and resulted in
erroneous trajectory data points.

Another reason which could cause the incorrect identification of
user locations in a dynamic environment is that the geometries of the
building locations might have changed over time, but these changes are
not fully incorporated in the data model [51]. For instance, a door is
constructed between two not-connected locations or a wall is built to
split the room into two different locations. However, for our case study
that is implemented in the already constructed building, the in-
accuracies in the trajectory data resulted because of the former two
reasons.

After preprocessing and examining the accuracy of trajectories, the
STriDE model is used to add contextual information of a building en-
vironment in collected trajectories for mapping actual building loca-
tions with each trajectory point (see Fig. 13). As shown in Fig. 13,
trajectory timeslices (TrajOfUser1-2, TrajOfUser1-5, etc.) of a User1 are
mapped to the corresponding building locations (e.g. Office1, Corri-
dorFloor2, etc.).

Fig. 9. Application of a proposed framework.

Fig. 10. Deployment of beacons in a building [12,51].

Table 2
Building information.

No. of buildings Type of buildings Occupant type No. of users

2 Educational Students 11

Table 3
Trajectory dataset information.

Dataset No. of
trajectories

No. of location
coordinates

Duration of
study

Sampling
frequency

Building
users

30 8426 2 weeks 5 seconds
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4.3. HMM-based trajectory analysis

For modeling the behaviors to recognize and categorize the move-
ments into different states, many types of non-probabilistic and prob-
abilistic approaches exist in the literature such as Bayesian dynamic
models and clustering techniques, state-based models such as simple
Markov chains and HMMs, patterns matching algorithms and deep
learning-based techniques [12]. Though, HMMs-based method is se-
lected for our application as statistical HMMs describe occupant
movements as a series of Markovian stochastic processes where the
probability distribution of a future state (i.e. safe or unsafe behavior or
a next location) of a stochastic (i.e. a random) process (a trajectory in
our case) is only dependent on its current state or a current location
which disregards the requirements of including the preceding states and
ultimately minimal training data is required [52].

An HMM has three fundamental properties [52] which define it. 1)
It assumes that the observation

= …O o o o o{ , , , , }T1 2 3 was produced by a process at time t whose state
St is hidden from the user. 2) The hidden state process fulfills the
Markov property where the current process state St is exclusively de-
pendent on only the previous state −St 1. 3) The hidden state variable can
only take T integer values … T{1, 2, 3, , }. Generally, an HMM ′ ′λ is de-
scribed using three main parameters which are written as 3-
tuple =λ A B π( , , ). Where, = …A a a a a[ , , , , ]nn11 12 13 is the transition
probability matrix. Each aij in …a a a a[ , , , , ]nn11 12 13 represents the prob-
ability of moving from state i to state j. The sum of transition prob-
abilities should be equal to 1. =B b o( )i t is the emission probability
matrix is also known as observation likelihood, where each b o( )i t re-
presents the probability of an observation ot being generated by a state i
and = …π π π π π{ , , , , }N1 2 3 is the vector of the initial state probabilities.
For training the HMMs, Baum-welch algorithm [52] is used which ad-
justs the model parameters A B π( , , ) as discussed above to maximize
the probability of the observation sequence given the model i.e. P O λ( | ).
For inputting the initial probabilities for the hidden states which are; 1.
static (no movement), 2. normal movement (0 < steps≤ 84 and π/
2≤ angle < π) and 3) risky movement (steps > 84 angle≥ π) are
given equal probability of occurrence i.e. = = { }π π π π{ , , } , ,1 2 3

1
3

1
3

1
3 .

For inputting the movement states into HMMs, Gamma distribution
[53] for step lengths and Von Mises distribution [54] (also known as the
circular normal distribution) for turning angles are used. Out of 30
trajectories, 25 trajectories of randomly selected users were used for
training the HMM. Whereas, 5 trajectories were used for the validation
purpose.

4.3.1. Model checking
After training the HMM using 25 trajectories of users, the trained

model is evaluated against the training dataset. To evaluate the general
goodness of the 3-state trained HMM, pseudo-residuals [55] (also
known as quantile residuals) are calculated using a trajectory

Fig. 11. Spatio-temporal trajectory of a user.

Fig. 12. User movements between not-connected building locations.

Table 4
System accuracy of identifying correct locations.

Detected user locations in
buildings

Correctly identified building
locations

System Accuracy

150 136 90%

Table 5
Confusion matrix for a 3-state HMM evaluation.

No. of test samples= 2132 Predicted States

S1 S2 S3

True States S1 1066 23 0
S2 30 810 75
S3 6 17 105

= = =S S SStay, Normal movement, and Risky movement1 2 3

Fig. 13. Occupant movements transformed into a contextually-enriched tra-
jectory.
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sequence = …O o o o o{ , , , , }T1 2 3 for verifying whether the trained HMM is
a true data generating process of a user trajectory or not. The residuals
are what is left over after fitting a trained model and their values are
equal to the difference between the trajectory observations and the
corresponding fitted values [55–57]. If the trained HMM model fits the
data well, the data points in the qq-plot will be closer to the straight line
and deviations of the points from the normality will indicate a lack of fit
[55]. The pseudo-residuals of the 3-state HMM fitted to the trajectory
data of an occupant with the theoretical quantiles on the horizontal axis
are displayed in Fig. 14. As shown in Fig. 14, the trained HMM is nicely
fitted for the observation trajectory dataset and has few deviations from
the straight line (i.e. the normality). However, the degree of goodness
of a model to incorporate all the possible variations in the trajectory
data can be improved by increasing or decreasing the number of hidden
states. For more details on pseudo-residuals, see Zucchini et al. [55]
research.

4.3.2. State decoding for model validation
Once the HMM is fitted using the training trajectory dataset, dif-

ferent test sequences from the trajectories of users are classified into
three states which are S , S and S1 2 3 using the Viterbi algorithm [52].
The Viterbi algorithm performs a global decoding process and generates
the most probable sequence of states which have produced the ob-
servations under the trained HMM model [52]. As an example, Fig. 15
shows the classification of one of the test sequence = …O o o o o{ , , , , }T1 2 3 .
The resulted states’ sequences (one of them is shown in Fig. 15) is
compared to the ground truth data which is collected by manually
extracting the stays, normal and risky movements of the users from
their trajectories using the values of step length and turning angle. Step
length is computed using the Haversine distance formula which is one
of the commonly used methods [49,50] of calculating the geographic
distance between the two geo-locations x y( , )t t and + +x y( , )t t1 1 as below;

⎜ ⎟= ⎛
⎝

− +
− ⎞

⎠
− +

+
+d rsin sin x x x x sin

y y
2

2
cos cos

2
t t

t t
t t1 2 1

1
2 1

In the above formula, ‘r’ is the radius of the earth. Whereas, turning
angle in radians is computed as the change in bearing bt as

= − −+ +b atan y y x x2( , )t t t t t1 1 between the time intervals −t t[ 1, ]
and +t t[ , 1]. Using these parameters, ground truth data is manually
constructed. Later, a confusion matrix [58] is computed Table 5 by
inputting the predicated states of the trained HMM and the ground

truth states’ data for describing the performance of the trained HMM
classification model. Finally, a precision-recall analysis [58] is con-
ducted after computing the confusion matrix for determining the re-
liability of the trained model. The precision is defined as the ratio of
how much of the predicted data is correct. Whereas, recall is the ratio of
how many of the actual trajectory states were predicted [58].

Using the R library of Caret package [59], the actual and predicted
values were inputted, and the precision-recall parameters were ex-
tracted. The overall precision of the model was 83%, whereas the recall
of the model was 89%.

4.4. Visualizing movement states using BIM

For the sake of the proof-of-concept demonstration of HMM-based
analysis, a single trajectory is decoded into three different states
(S , S and S )1 2 3 which corresponds to the movements of a user in a
building in Fig. 15. The decoded trajectory needs to be linked with the
building location from where it was captured [3]. For visualizing the
latest classified movement states resulted from an HMM by analyzing a
user trajectory, a Building Information Modeling (BIM)-based software
i.e. Autodesk Revit Architecture is used. The BIM approach is selected
because existing literature recognizes it as a ‘future IT solution’ and
favored over traditional three-dimensional Computer-Aided Design
(CAD) approaches [12] as it is an efficient way of information man-
agement during the building lifecycle [3]. One of the major benefits of
using Revit software is that it is an open-sourced solution [12] and
offers the user-customized functionalities using its external plug-ins
through its Application Programming Interface (API). For visualizing
the decoded states of a trajectory, a Revit plug-in named ‘Dynamo’ is
used. Dynamo is a visual programming tool which gives the ability to
define pieces of logic using visual scripting by minimizing the re-
quirement of extensive programming [60]. Dynamo enables us to
construct visual programs (known as graphs) by connecting ‘nodes’
with ‘wires’ (also called as connectors) for specifying the logical flow of
information [60]. Our Dynamo graph consists of three main steps as
shown in Fig. 16. At first, a list of all the locations of a building model
which were tagged as ‘rooms’ in a Revit software is extracted into
Dynamo. This list is compared with the information of building loca-
tions having risky movements obtained from the excel sheet that is
resulted by our prototype system. The risky movements are quantified
based on their percentage of occurrences in a trajectory. For instance, in

Fig. 14. Time series (top) and qq-plots (bottom) of the pseudo-residuals of the 3-state model for step lengths (left) and turning angles (right).

Fig. 15. Decoded sequence of states (S , S and S )1 2 3 of the trajectory observations of a user.
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Fig. 15, a trajectory having 30 sample points is shown which spans over
2.5 min. An HMM has categorized this trajectory into 3 movement
states. Out of 30, 10 states were identified as ‘risky states’. The per-
centage frequency of risky states is computed by dividing the number of
occurrences of risky states by the total number of trajectory points and
multiplying it by 100 i.e. ×( )10010

30 , a value of 33 is achieved for vi-
sualization. To quantify the calculated percentage, three different
colors are used for generating the visualization which are; Red, Orange
and, Yellow (see Fig. 17). The color scheme is designed using the OSHA
color code standard for safety management at work [61]. The red color
is used for visualizing such locations which have the highest percentage
of risky movements i.e. 70 or more whereas, percentages less than and
equal to 30 are shown in yellow color, and percentages greater than 30
and less than 70 are shown in orange color. The range of values for
defining different colors was constructed for the sake of demonstrating
the functionality of a prototype system to show the criticality of

locations by changing their colors on a BIM model. These values can be
altered accordingly based on user preferences. To show a process of
decoding and visualization using a BIM model, a single user trajectory
of short time duration is used. However, in case of multiple and long
trajectories of several occupants which are collected throughout a day,
the process will remain the same as described above but will be re-
peated for each individual trajectory. In the end, to assign the color to a
location, a function of the averaging needs to be performed on the
calculated percentages to acquire a unique value for representing dif-
ferent trajectories on a BIM model. In the 3rd step of our Dynamo
graph, conditions for the color assignment are written for visualizing
different types of risky locations on a BIM model. The descriptions and
the functionalities of the nodes which were used for constructing our
Dynamo graph (see Fig. 16) can be found in [60].

An example to understand the impact of change in the contextual in-
formation of a building on user behaviors; As discussed in Section 3, for

Fig. 16. A Dynamo graph for visualizing different colors against risky movements on a BIM model. (For interpretation of the references to color in this figure legend,
the reader is referred to the Web version of this article.)

Fig. 17. Visualizing different types of risky movements on a building model in Revit software. Red for 70% or more, Orange for greater than 30% and less than 70%,
and a Yellow for less than or equal to 30% occurrences of risky locations in a trajectory. (For interpretation of the references to color in this figure legend, the reader
is referred to the Web version of this article.)
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tracking the evolution of building objects (occupants, trajectories and
locations), the STriDE model uses the concept of timeslices (TSs). To
show the an application of the proposed framework to hold the building
evolution with the contextually-enriched trajectories to study move-
ment behaviors for safety management, let's suppose we have a building
from where the spatio-temporal data is collected (as discussed above)
and the purpose of one of the building locations is changed (see
Fig. 18). The location ‘office’ is now a ‘general room’. As the STriDE
model uses ‘concepts’ for describing the building locations. In Fig. 18,
there is a hierarchy of SKOS concepts. It has a skos:has TopConcept
connects skos:Concept room. Two skos:Concept (office and room) are
defined. All these concepts form a hierarchy. Also, there is a profile
named employee Profile which gives access to all the concepts (building
locations). As soon as the functionality of a room (i.e. a context) is
changed, a new TS is created. For instance, a user Jane is an entity of a
TS ts-jane0 and her position is tracked by a trajectory tr-jane. We can
observe by a link between tr-jane0 and room1 that Jane is in room1.
The entity room1 was initially an office as suggested by the dct: subject
link of tr-room10 towards the concept office. Later, this room is changed
as a room having the same geometry as of the office represented as ts-
room11.

5. Discussion

The objective of this study is to facilitate the development of new
systems to enable the standardization of occupant behaviors’ descrip-
tions by incorporating the real-life dynamicity of building environments
during simulations for an improved understanding of occupant beha-
viors [11]. To address this objective, a framework named ‘OBiDE’ is
proposed (see Figs. 3 and 19) which offers; 1. mapping the dynamicity
of evolving spatial and contextual building environment's information
with occupants’ movements, 2. provides a centralized knowledge base

to hold the occupant spatio-temporal movements tagged with relevant
contextual information for understanding mobility-based behavioral
interactions of occupants, 3. data enrichment of DNAS ontology [4] to
enrich occupant behaviors’ information using the results of a state-of-
the-art machine learning model in the form of ‘hidden states’ for cal-
culating the probabilities of the occupant actions and later feeding this
information into a DNAS ontology (component: actions) for detailed
understanding of occupant behaviors by finding the correlations and
patterns in them.

The proposed framework is implemented using ontology-based data
model which offers flexibility for further expansions and interoper-
ability for the enrichment of occupant behaviors’ descriptions with
supplementary data sources to complement the process of occupant
behavioral analysis. The application of the proposed framework is de-
scribed using a case-study for safety management in a building by
monitoring the movements of occupants across different locations. For
capturing the user movements, in the literature, there exist different
types of sensors which provide proximity-based services and coarse-
grained location detection for indoor and outdoor building situations as
discussed in Section 2(c). For this study, BLE beacons are used for lo-
cation data acquisition of the building users. The selection of this lo-
cation acquisition technology is purely done based on its usability ex-
plored in the literature [46,51], less cost of deployment and availability
for the implementation. It should be noted that proximity (i.e. being
close to a certain building object) is linked to the building location
where exactly a person is but it is not necessarily the same [51]. An
accurate building location of an occupant corresponds to an absolute
value of the geographical coordinate system (e.g. longitude and latitude
pair values) is more than just proximity [51]. For instance, the Blue-
tooth signals of beacons fluctuate significantly because of the physical
obstacles, the material of walls and ceiling which cause the multipath
effects [46,51]. These external interferences introduce fluctuations in

Fig. 18. Change in the functionality of a location (an Office is now a general Room) at =t 2 resulting in different movements in a building (top row). Maintaining the
historicization of building evolution in a data model (timeslices are in Blue, entities are in Green, SKOS concepts are in Yellow, a profile is in Purple and the geometry
is in Red (bottom row). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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the signal strength values of beacons resulted by the propagation dif-
fraction, reflection, and scattering which ultimately complicates the
process of determining the precise location information of occupants in
real environments [46]. The process of collecting the precise proximity
data of occupants using beacons gets more complicated as the resolu-
tion of system increases. The overall system resolution (see Fig. 1) is
based on spatial (e.g. building, floor, room), temporal (e.g. hours,
minutes, seconds) and occupancy resolution (i.e. occupancy detection,
occupancy count, the identity of occupants and inferring the activities
of occupants) [62]. As the resolution of the developed sensors increases,
the building areas get smaller, building users get more recognizable
individually and eventually, their activities can be inferred [51]. For
developing an application using the proposed framework, the data
model holds the information at room level that is collected per second
using beacons for identifying each user across different building loca-
tions using their unique identifications. However, the accuracy of pre-
cise location detection will be degraded if the spatial resolution in-
creases from room level to areas within the rooms [46,51].

The spatio-temporal data collected using BLE beacons is then pre-
processed, transformed into trajectories and contextually enriched by
mapping the updated location information with each trajectory point.
The contextually-enriched trajectories are stored to build a knowledge
base to study occupant behaviors. Later, a probabilistic model i.e.
Hidden Markov Model (HMM) is applied on stored trajectories for
computing the probabilities of the occurrences of different types of
movements. For the categorization of movements, information of the
step length and the turning angle is used as these two parameters ca-
tegorize the mobility [46]. The movements of occupants are classified
into three states which are static (stay location), normal and risky by
defining the values of step lengths and turning angles for hidden states.
Lastly, the most probable latest states of building locations are ex-
tracted by analyzing the movements of occupants and shown in Fig. 17
using different colors on a building model.

An HMM has decoded a user trajectory into three states which are;
stay locations, normal movements, and risky movements. However, for
visualization, only risky states were further quantified and visualized as
identifying unsafe movements having run segments and many turnings
is the priority for safety managers to take necessary actions in real-time
[12]. These unsafe movements can potentially result in an accident if
not controlled [12]. Whereas, the other two decoded states of an HMM
depict normal movement behaviors of users in a building. A BIM-based
software i.e. Revit Architecture is to display movements of occupants.
The motivation behind using a BIM-based approach is that it is the
universal Architecture, Engineering and Construction (AEC) industry
standard and widely used and preferred for maintaining the informa-
tion a building throughout its lifecycle [12].

For already constructed buildings, the geometry of the locations
does not change frequently. Whereas, the purpose of locations in a
building keeps changes with a passage of time as per the building re-
quirements. The application of our data model for keeping track the
building evolution [63] is demonstrated in a way that the functionality
of a room in a building is changed. This change in the contextual in-
formation of a location resulted in different movements inside a
building. For example, Fig. 18 at =T 1 shows a tagging of a spatio-

temporal trajectory of a user ‘Jane’ before the location undergoes
evolution in the functionality. Whereas, at =T 2, a building location ‘an
office’ is changed into a general ‘room’. This process of evolution is
stored in a data model by generating a new TS (i.e. Room11). The
generated TS have a filiation relation with an office TS (i.e. Room10).
However, the same geometry as of office is tagged with a new TS (i.e.
Room11). In this way, the evolution in the contextual information is
stored inside in our data model.

6. Conclusion

Occupant behavior is a crucial and often overlooked factor in at-
taining building performance goals such as reducing the consumption
of building resources (e.g. energy, materials, etc.). Though advanced
smart building technologies integrate different building subsystems to
optimize the usage of the building resources. But occupant behaviors
(e.g. actions) if not incorporated in modeling can significantly impact
the overall performance of a building. The buildings are subject to
constant change, where the locations evolve over time in terms of
geometry and contextual information during a building lifecycle. This
makes the data collection of occupants as well as the building infra-
structural changes a continuous process for the exploration of occupant
behaviors using a building context. This study has presented an in-
tegrated OBiDE framework to maintain the dynamicity of a building
environment in a data model and fusing the occupants’ movements and
presence data (the pre-requisites for any type of occupant behaviors’
understanding) with the most updated building information.

Managing the safety of occupants in a building by 1. capturing their
spatio-temporal data, 2. transforming it into contextually-enriched
trajectories, and 3. classifying the trajectories into three different
movement states which enriches a DNAS ontology for understanding
their mobility-related behaviors is one of the possible use-cases of the
OBiDE framework. Moreover, the risky movement states of the occu-
pants were later quantified based on their percentage of occurrences in
a trajectory and visualized using a BIM software to provide safety
managers a fusion of information extracted from the trajectory data
mapped with the updated building architectural model to deliver in-
sights about movements of occupants using a building context.
Consequently, building locations with risky movements can be easily
identified, and necessary actions can be taken accordingly by the safety
managers.

The OBiDE framework which tracks spatio-temporal data of occu-
pant generated in a dynamic environment establishes a basic reference
model that can not only be used for presented safety management ap-
plication but also for space utilization analysis and energy performance
simulations where the decision-making processes are performed based
on the occupant movements across different locations in buildings.
However, additional behavioral occupant datasets should be collected
that could allow an improved understanding of a dynamic building
environment for enhancing the building overall performance by in-
creasing the occupants’ productivity, environmental quality in a
building, and functionality of building spaces.

Fig. 19. Different stages in OBiDE framework.
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