
HAL Id: hal-00625080
https://u-bourgogne.hal.science/hal-00625080v1

Submitted on 20 Sep 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Integration of Spatial processing and knowledge
Processing through the Semantic Web Stack

Ashish Karmacharya, Christophe Cruz, Frank Boochs, Franck S. Marzani

To cite this version:
Ashish Karmacharya, Christophe Cruz, Frank Boochs, Franck S. Marzani. Integration of Spatial
processing and knowledge Processing through the Semantic Web Stack. International Conference on
Geospatial Semantics, May 2011, Brest, France. pp. 200-216. �hal-00625080�

https://u-bourgogne.hal.science/hal-00625080v1
https://hal.archives-ouvertes.fr

Integration of Spatial processing and knowledge

Processing through the Semantic Web Stack

Ashish Karmacharya
1,2

, Christophe Cruz
2
, Frank Boochs

2
, Franck Marzani

1

1 Institut i3mainz, am Fachbereich 1 - Geoinformatik und Vermessung

Fachhochschule Mainz, Holzstrasse 36, 55116 Mainz

{ashish, boochs}@geoinform.fh-mainz.de

 2 Laboratoire Le2i, UMR-5158 CNRS,

Dep. Informatique IUT Dijon, 7, Boulevard Docteur Petitjean

BP 17867, 21078 Dijon CEDEX, France

{christophe.cruz, franck.marzani}@u-bourgogne.fr

Abstract. This paper presents the integration process of spatial technologies

and Semantic Web technologies and its associated tool. The result of this work

is a spatial query and rule engine of spatial. To do so, existing ontology with

spatial elements is adjusted in order to process the spatial knowledge through

spatial technologies. This paper outlines the methods and the processes of these

adjustments and how results are returned by our tool. The SWRL and the

SPARQL language are extended for spatial purpose and the existing OWL

ontology wine is used as an application example.

Keywords: Spatial processing, Knowledge processing, OWL Ontology, Rule

language, Query language, SPARQL, SWRL.

1 Introduction

The Semantic Web is a set of technologies complementing the conventional Web

tools proposed by Sir Tim Berners-Lee. It is seen as the most likely approach to reach

the goal of semantic interoperability. The Semantic Web is envisaged as an extension

to the existing web from a linked document repository into the platform where

information is provided with the semantic allowing better cooperation between people

and their machines. This is to be achieved by augmenting the existing layout

information with semantic annotations that add descriptive terms to web content, with

meaning of such terms being defined in ontologies [1]. Ontologies play crucial role in

conceptualizing a domain and thus play an important role in enabling Web-based

knowledge processing, sharing and reuse between applications.

This research attempts to contribute through including the functionalities of the spatial

analysis within the Semantic Web framework. Moving beyond the semantic

information, it has opened the chapter of inclusion of other form of information

within the Semantic Web framework. It is important in the sense of the development

of the technology itself. This work should at least provide a certain vision towards the

direction the technology should take to integrate new forms of data. It discusses the

direction in terms of spatial integration [3, 5].

2 Ashish Karmacharya1,2, Christophe Cruz2, Frank Boochs2, Franck Marzani1

The Semantic Web stack (e.g. fig. 1.) can be adjusted with a layer of that contains

spatial information. The research proposes such an arrangement in the stack. A layer

of spatial data mixing seamlessly with the semantic proposition in the layer Ontology

through its OWL/RDF based syntax can be envisaged. This layer since uses the

standard syntax of OWL/RDF can perform spatial queries through SPARQL or infer

rules through standards as SWRL.

Fig. 1. Snapshot of the wine ontology adjusted with spatial component.

The integration process of the spatial technologies into the Semantic Web stack is

undertaken by defining a new kinds of FILTERs for SPARQL queries and new kinds

Built-ins for SWRL rules. These new FILTERS and Built-ins allow to process queries

and rules with spatial data related to semantic data. The next chapter discusses this

adjustment in the Semantic Web stack. Section 3 presents the top level ontology

which enables the use of spatial technologies for any OWL ontology. Section 4

presents the translation engine which allows the translation of spatial queries and

rules into standard queries and rules. Section 5 gives the complete process of

extending an existing ontology in order to take into account the spatial technologies

by using the famous wine ontology. Section 6 concludes this paper.

2 Background

The research project of Klein E. M. [2] in a certain degree follows the pattern of

existing studies in geo-ontology research domain by focusing on the use of ontology

for achieving data interoperability. It follows the pattern through defining the

problems of data discovery in WFS (Web Feature Services) and the semantic

differences in the data though the features associated to the data have same naming

conventions. The problems follow even after the data discovery due to the nature of

Integration of Spatial processing and knowledge Processing through the Semantic Web Stack

3

information that data represents is not explicitly stored. The research hence plans a

mechanism of match making of different SDIs (Spatial Data Infrastructure) through

the mediation of semantic rich domain ontology designed through the consultation of

the experts. The Domain Ontology as it terms contains explicit information which

capture the meanings of real world entities.

As with the case of this research, the research [2] utilizes the inference capabilities

of the description logics in the ontology representation language of OWL-DL through

inference rules. In addition, it uses a simple hydrological example to semantically

annotate the data through the spatial rules. The SWRL representations of the rule are

given:

Region(?x) ^ hasSlope(?x, Flat)  Lowland(?x) (1)

Lowland(?x) ^ River(?river) ^ adjacentTo(?x,?river) ^

hasAltitude(?x, ?xAlt) ^ hasAltitude(?river, ?riverAlt) ^

swrlb:subtract(?diffAlt, ?xAlt, ?riverAlt) ^

swrlb:lessThan(4, ?diffAlt)  Floodplain(?x)

(2)

Region, Lowland, River and Floodplain are the concepts and hasSlope, adjacentTo

and hasAltitude are the object properties in both feature type’s ontology and domain

ontology. The idea consists to semantically annotate the concept Floodplain with the

rules. The first rule represented by equation 1 forms the lowland if the slope of a

region is flat. There are many constraints of a region being lowland but the research

uses this rule to demonstrate the usability. A Digital Elevation Model (DEM) is used

in background which intersects the inferred information and the dataset is annotated

as lowland. In short the object property hasSlope is intercepted and run through an

algorithm which combines the DEM dataset to determine the flat slope. Regions

inferring these flat slops are then annotated as lowland. Extending the rule to equation

2, it uses object property adjacentTo and built-ins of SWRL to annotate the

floodplain. The object property adjacentTo again needs to run an algorithm in

collaboration to the spatial dataset to provide the result. This result again infers with

the other axioms in the knowledge base to enrich itself. The adjacentTo object

property utilizes buffer operation to determine the objects close to it. However, the

operation is hidden from the users and is executed inside the algorithm. This

execution enriches the knowledge base which could be inferred through standard rule

of SWRL. The execution of buffer or any spatial operations are carried out through

the spatial operations of ArcGIS. The semantic annotation through these rules is

carried out to enrich the Domain Ontology thus negating any short coming of explicit

semantics in feature type’s ontology.

The method of inferring the rules first through execution of spatial operations at

database or application level and then enriching the knowledge base matches with the

current research work. However, the implications in both researches are different. The

approach that current research undertakes is to enhance the Semantic Web

technologies through integrating spatial components into the technology. It differs

significantly with the former research [2] as it was conducted to use semantic web

tools and techniques to answer specific GIS problems. Hence, the scale of application

of Semantic Web techniques is relatively low in the previous research [2]. In other

4 Ashish Karmacharya1,2, Christophe Cruz2, Frank Boochs2, Franck Marzani1

hand, it could be seen that the spatial operations and functions are used implicitly

through object properties like hasSlope or adjacentTo which are terms of natural

language. This might give ambiguity to the interpretations of these terms. For

example the term adjacentTo can have two or more meanings as rightly quoted in the

thesis report. It can be near to each other either through touching or not touching. So,

the utilization of spatial operation should be based on these factors. If the adjacent to

means that the objects are touching then the spatial operation “Touch” could be

directly used instead of Buffer which is more resource dependent.

Contrary to [2], this research has taken the works forward to address these

concerns. Instead of using the commonly used terms, it uses the spatial operations and

functions terminology standardized by OGC [4]. Standard terms are proposed to

formulate rules rather than using domain based terms.

The equation 3 illustrated the adjustment of object property adjacentTo directly

through SWRL rules through spatial built-ins, which means that the individuals of

River which are in the Buffer of 50m of a individual of the concept Lowland

possesses a relationship (ObjectProperty) named adjacentTo that link the Rivers and

Lowlands.

River(?x)^Lowland(?y)^Buffer(?x, ?y, 50)

adjacentTo(?x,?y)

(3)

Thus, it could be seen that there is much more flexibility concerning the definition

of spatial rules through standard spatial built-ins proposed here. Besides the spatial

built-ins for SWRL, this research adds on spatial built-ins to SPARQL, the query

language of semantic web tools which is not explicitly researched before. However,

before using these spatial built-ins in an existing ontology, it is first necessary to

adjust this one with top level concepts. This integration process allows the linking of

spatial data to ontologies. This ontology adjustment process is a generic process

which allows the adjustment of any existing ontology in order to process spatial

queries and rules on it.

3 The Top Level Ontology

This ontology serves as a foundation ontology to which objects can be instantiated

during the identification process of spatial elements. The axioms are the building

blocks of ontology and hence these axioms in the context of top level ontology of the

application should be discussed to provide an overview of the system. The main

axioms of this top level ontology are:

Semantic - spatial:Feature

Geometric - shp:Shape

Geometric Relationship - shp:hasShape

Spatial Relationship - sa:hasSpatialRelations

Spatial Database Relationship - doc:hasDBDetails

A shape has a definition in a spatial database. An individual has a shape and has

spatial relationships with other individuals which have a shape.

Integration of Spatial processing and knowledge Processing through the Semantic Web Stack

5

The class axiom spatial:Feature represents the spatial objects. This class axiom is the

generalized class of any objects with spatial definition. This class is further

specialized into classes representing the different objects such as vin:Winery or

vin:Region for instance regarding the example at the end of this paper. The

spatial:Feature has to be specialized classes into subclasses. This abstract class cannot

be instanced but only the individuals which belong to a subclass of spatial:Feature can

have a spatial attribute.

The next important class axiom is shp:Shape which stores the local coordinates of

the objects identified in the excavation site. This generalized class is specialized into

shp:_3D and shp:_2D sub classes to represent the dimensions of the coordinates.

Currently, an orthophoto is used to identify objects on a map and hence the 2D

coordinates are returned of the objects. Semantics of objects in the knowledge base

are defined through object property feat:objRel. But before that they need to relate to

their spatial signature that is to their coordinates. This is managed through the

specialized object property of shp:hasShape. As mentioned the coordinate of the

object is derived through the digitization are stored as an individual of shp:_2D. This

instance stores the coordinate of object. Once both the object and its coordinates are

enriched, shp:hasShape provides a relationship between them. For instance, the

concept win:Region as a subclass of spatial:Feature has the property shp:hasShape

which can be a shp:_2D or shp:_3D.

The annotations to the database are carried out through assigning semantics to the

annotations as assigning the relevant database and its relevant table in which the data

is stored. It also provides the connection to the spatial column in which geometries of

the objects are stored. An object property doc:hasDBDetails under general class

doc:hasDocumentDetails provides these attributive connections. The three data

properties to address the semantics of spatial annotation part of connecting to the

MBRs are doc:dbName, doc:spColumn and doc:tableName, three specialized classes

of doc:hasDBDetails.

The spatial functions and operations return geometries on their executions. It is

hence important to have provision to store these returned geometries in the ontology.

A generalized class sa:spatialOperation is introduced in the top level ontology. Every

spatial operation under geoprocessing functions is then adjusted as its subclass. The

class hierarchy of sa:spatialOperation reveals that the subclasses within it are the

classes which need to represent returned geometries in some form.

The four spatial processing functions which are discussed here are Buffer, Union,

Intersection and Difference. These spatial functions compute new spatial geometries.

These new geometries are also stored in the spatial database in order to be computed

by future spatial functions. As a solution, we definition four new classes called

sa:sp_Buffer, sa:sp_Union, sa:sp_Intersection and sa:sp_Difference which are of

specialized classes of sa:spatialOperation. The classes here are instantiated when the

spatial operation of this category is executed. The result of execution is stored within

the instantiated individual as the data property feat:localPlacement.

The functions under this category need to take a feature to execute them. The

feature are objects within class feat:Feature. In order to maintain a relationship

between the spatial operations representing classes under sa:spatialOperation and

features under feat:Feature in the ontology an object property sa:hasSpatialRelations

6 Ashish Karmacharya1,2, Christophe Cruz2, Frank Boochs2, Franck Marzani1

is added in the top level ontology. The specialized property relates the individuals

under sa:spatialOperation and feat:Feature. For example for every instance in class

sa:sp_Buffer (sub class ofsa:spatialOperation) be a property sa:hasBuffer (specialized

object property of sa:hasSpatialRelations) which relates the sa:sp_Buffer class to the

classes specializing feat:Feature. There are also four sa:hasSpatialRelations defined

corresponding to each geoprocessing functions (sa:hasBuffer, sa:hasUnion,

sa:hasIntersection, sa:hasDifference). Besides theses object properties, data properties

to correspond the attributive nature of the relationships are also adjusted in the top

level ontology. A generalized data property sa:hasSpatialAttribute is introduced in the

top level ontology. Other attributive properties as sa:hasBufferDistance (denotes the

buffer distance of the buffer) are specialized properties of it.

Funtions Concept ObjectProperty Execution Method

Buffer sa:sp_Buffer sa:hasBuffer(x,c)

C is of float value providing the buffer

distance

Union sa:sp_Union sa:hasUnion(x,c)

Intersection sa:sp_Intersection sa:hasIntersection(x,c)

Difference sa:sp_Difference sa:hasDifference(x,c)

Intersection sa:sp_Intersection sa:hasIntersection(x,c)

Table 1. The Spatial Processing Functions

Functions ObjectProperties Characteristics

Disjoint sa:hasDisjoint(x,y) Symmetric

Touches sa:hasTouch(x,y) Symmetric

Within sa:hasWithin(x,y) Transitive

Overlaps sa:hasOverlaps(x,y) 

Equals sa:hasEqual(x,y) Symmetric, Transitive

Crosses sa:hasCrosses(x,y) Symmetric

Intersects sa:hasIntersect(x,y) Symmetric

Contains sa:hasContain(x,y) Transitive

Table 2. The Georelationtionship Functions

These functions demonstrate the spatial relations between objects hence they are

very straightforward when adjusting in ontology. They can be directly adjusted

through object properties within the top level ontology. These functions are adjusted

Integration of Spatial processing and knowledge Processing through the Semantic Web Stack

7

as specialized object properties of sa:hasSpatialRelations. The execution pattern of

every function in this category is executed in similar. The table 2 illustrates the steps

of every spatial function following OGC spatial operation standards but this research

thesis utilizes four operations to demonstrate the argument. Those functions are

Disjoint, Touch, Within and Overlap which are represented through sa:hasDisjoint,

sa:hasTouch, sa:hasWithin and sa:hasOverlaps subsequently.

4 The translation engine

The translation engine allows the computation of spatial SPARQL queries and spatial

SWRL rules. In both cases, the translation engine interprets the statements in order to

parse the spatial components. Once the spatial components are parsed, they are

computed through relevant spatial functions and operations by the translation engine

through the operations provided at the database level. Then after, the spatial

statements are translated to standard statements for the executions through their

proper engine namely the SPARQL engine and the SWRL engine. Concerning the

inference engine, the enrichment and the population of the ontology regarding the

results of the inference process is possibly stored in the ontology.

Inputs

Links to spatial

definitions

Output

Adjusted

OWL
ontology

Spatial
SPARQL
queries

and
SWRL
Rules

Spatial
DB

Translation
engine

Standard engine

Regular
SPARQL
queries

and
SWRL
Rules

Adjusted,
Enriched and

Populated
OWL

ontology

Input Output

Input

Fig. 2. The spatial processing of the translation Engine translating SPARQL queries and OWL

rules

The next sections presents in details the translation engine on more specifically the

translation process of spatial SPARQL queries to regular queries. The following one

presents the translation process of spatial SWRL rules to regular SWRL rules. These

two processes have in common the use of SQL statements to query to the spatial

database.

8 Ashish Karmacharya1,2, Christophe Cruz2, Frank Boochs2, Franck Marzani1

4.1 Spatial SPARQL Queries

The FILTER keyword in SPARQL queries is used to define spatial queries. A

FILTER can be used to compare strings and derive results. The functions like regular

expression which matches plain literal with no language tag can be used to match the

lexical forms of other literals by using string comparison function. In addition,

SPARQL FILTER uses the relational operators as = or > or < for the comparison and

restrict the result. From this idea, the FILTER principle is extender in order to process

georelationship functions.

4.1.1 Geoprocessing FILTER

The following example shows how to select Building which intersect the buffer of

200km of a River. In this example, the keyword FILTER is replaced by the keyword

SPATIAL_FILTER in order to be processed by the translation engine

SELECT ?name1 ?name2

WHERE

{

 ?feat1 feat:name ?name1

 ?feat2 feat:name ?name2

?feat1 rdfs:type feat:River

 ?feat2 rdfs:type feat:Building

 SPATIAL_FILTER [buffer (?x, 200 000,?feat1)]

SPATIAL_FILTER [intersection (?y,?x,?feat2)]

}

This process is a selection process, and no inference process is engaged. Once the

process is ended, the rule is translated to a standard given in the following example. It

can be seen that the SPATIAL_FILTER is replace by standard RDF triples which.

Any SPARQL engine is able to run this rule.

SELECT ?name1 ?name2

WHERE

{

 ?feat1 feat:name ?name1

 ?feat2 feat:name ?name2

?feat1 rdfs:type feat:River

 ?feat2 rdfs:type feat:Building

 ?feat1 sa:hasBuffer ?x

?x rdfs:type sa:sp_buffer

?x sa:hasBufferDistance 200 000

?y rdfs:type sa:sp_Intersection

?y sa:hasIntersection ?x

?y sa:hasIntersection ?feat2

}

The table 3 shows the translation of geoprocessing functions contained in

SPATIAL_FILTER into standard triple component of a SPARQL query.

Integration of Spatial processing and knowledge Processing through the Semantic Web Stack

9

Function Spatial SPARQL Syntax Translation

Buffer SPATIAL_FILTER [buffer (?x, b, ?y)]

Result: Populated in the knowledge base as

individuals of class sa:sp_Buffer.

?x rel:hasBuffer ?y

?y rdfs:type sa:sp_buffer

?y sa:hasBufferDistance 200 000

Union SPATIAL_FILTER [union (?x, ?y1,?y2)]

Result: Populated in the knowledge base as

individuals of class sa:sp_Union.

?x rdfs:type sa:sp_Union

?x sa:hasUnion ?y1

?x sa:hasUnion ?y2

Intersection SPATIAL_FILTER [intersection (?x, ?y1,?y2)]

Result: Populated in the knowledge base as

individuals of class sa:sp_Intersection.

?x rdfs:type sa:sp_Intersection

?x sa:hasIntersection ?y1

?x sa:hasIntersection ?y2

Difference SPATIAL_FILTER [difference (?x, ?y1,?y2)]

Result: Populated in the knowledge base as

individuals of class sa:sp_Difference.

?x rdfs:type sa:sp_difference

?x sa:hasDifference ?y1

?x sa:hasDifference ?y2

Table 3. The spatial SPARQL syntax and its translation into SARQL syntax.

4.1.2 Georelationship FILTER

The following example shows how to select couples of features which are linked

by a touch spatial relationship. In this example, the keyword FILTER is replaced by

the keyword SPATIAL_FILTER in order to be processed by the translation engine.

The name of features couples are selected with this restriction. The first feature has to

be a feat:River which is of kind of feat:feature, and the second feature has to be a

feat:Building which is also of kind of feat:feature. The SPATIAL_FILTER selects the

couples which are touching spatially.

SELECT ?name1 ?name2

WHERE

{

 ?feat1 feat:name ?name1

 ?feat2 feat:name ?name2

?feat1 rdfs:type feat:River

?feat2 rdfs:type feat:Building

SPATIAL_FILTER [touches (?feat1, ?feat2)]

}

This process is a selection process, and no inference process is engaged. The aim

of the translate engine consists to compute the touches spatial process of the Cartesian

production between the features of the kind feat:River and feat:Building. In the case

of a positive result, this new link is stored in the ontology between the couple of

feature with the help of a sa:hasTouches relationship which is of the kind of

sa:hasSpatialRelations. Once the process is ended, the rule is translated to a standard

10 Ashish Karmacharya1,2, Christophe Cruz2, Frank Boochs2, Franck Marzani1

given in the following example. It can be seen that the SPATIAL_FILTER is replace

by the triple “feat1 sa:touch ?feat2”. Thus this rule can be processed by a standard

SPARQL engine.

SELECT ?name1 ?name2

WHERE {

?feat1 feat:name ?name1

?feat2 feat:name ?name2

?feat1 rdfs:type feat:River

 ?feat2 rdfs:type feat:Building ?feat1

 sa:touch ?feat2

}

The table 4 shows the translation of georelationship functions contained in

SPATIAL_FILTER into standard triple component of a SPARQL query.

Functions ObjectProperties Characteristics

Disjoint sa:hasDisjoint(x,y) Symmetric

Touches sa:hasTouch(x,y) Symmetric

Within sa:hasWithin(x,y) Transitive

Overlaps sa:hasOverlaps(x,y) 

Equals sa:hasEqual(x,y) Symmetric, Transitive

Crosses sa:hasCrosses(x,y) Symmetric

Intersects sa:hasIntersect(x,y) Symmetric

Contains sa:hasContain(x,y) Transitive

Table 4. The spatial SPARQL syntax and its translation into SARQL syntax.

4.1.3 Optimization

The translation engine is time consuming for large spatial database. In order to

select the context of execution four options can be given to the SPATIAL_FILTER.

SPATIAL_FILTER_SELECT: No spatial operation is undertaken; the rule is

translated without any spatial processing

SPATIAL_FILTER_PROCESS: Spatial operations are processed only for the

couples of features which don’t have this relationship. If this relation already exists,

this one is not computed.

SPATIAL_FILTER_UPDATE: Spatial operations are processed only for the

couples of features which have already this relationship in order to update these

relationships.

SPATIAL_FILTER_ALL: This is the option by default which consists to compute

all relationship for the Cartesian product in order to process it if it doesn’t exist or in

order or update it.

The following example shows that the selection of features which have the touches

relationship is done with the option SPATIAL_FILTER_UPDATE.

Integration of Spatial processing and knowledge Processing through the Semantic Web Stack

11

SELECT ?name1 ?name2

WHERE

{

 ?feat1 feat:name ?name1

 ?feat2 feat:name ?name2

?feat1 rdfs:type feat:River

 ?feat2 rdfs:type feat:Building

 SPATIAL_FILTER [touches (?feat1, ?feat2)]

 SPATIAL_FILTER_UPDATE

}

In addition the spatial filter can be combined by the following manner. It consists

to insert news filters and to use the same variable. The following example consists to

select building which contains a chimney in order to see if it touches a river.

Moreover, no spatial processing is done, only the existing knowledge in the ontology

is used to process this query.

SELECT ?name1 ?name2

WHERE{

 ?feat1 feat:name ?name1

 ?feat2 feat:name ?name2

?feat1 rdfs:type feat:River

 ?feat2 rdfs:type feat:Building

?feat2 rdfs:type feat:Chimney

 SPATIAL_FILTER [touches (?feat1, ?feat2)]

 SPATIAL_FILTER [touches (?feat2, ?feat3)]

 SPATIAL_FILTER_ SELECT
}

4.2 Inference Rules through SWRL

In an attempt to define the built-ins for SWRL, a list of eight built-ins was

proposed during the research work. These eight built-ins reflect four geoprocessing

functions and four georelationship functions that are discussed previously. The built-

ins reflecting geoprocessing functions are built up in combinations with the spatial

classes adjusted in the ontology and their relevant object properties. The built-ins for

georelationship functions are in contrast are just object properties and using these

object properties in collaboration to the spatial functions in database system.

4.2.1 Geoprocessing Built-ins

The first set of built-ins is the built-ins for geoprocessing functions. They are

functions returning geometries and adjusted in the ontology through feat:Feature

sa:hasSpatialRelations sa:spatialOperation sequence. This class-property series is

illustrated in table 5. The initial step consist the built-ins parsed to be processed by the

translation engines. First the spatial built-ins are identified from the statement and

parsed. Concurrently, the features on which these built-ins are applied are also

12 Ashish Karmacharya1,2, Christophe Cruz2, Frank Boochs2, Franck Marzani1

identified.Then after, the SQL statementswith relevant spatial function on the

relevantobjects of the featuresare executed at the database level. The results are then

enriched in the knowledge base. Once, the knowledge base is enriched, the spatial

built-ins are broken down into standard feat:Feature sa:hasSpatialRelations

sa:spatialOperation sequence to generate the standard SWRL statement which is

executed through standard inference engines.

Functions Class Object Property Data Property Built-ins

Buffer sa:sp_Buffer sa:hasBuffer sa:hasBufferDistance Buffer(?x, b, ?y)

Union sa:sp_Union sa:hasUnion - Union(?x,?y1,y2)

Intersection sa:sp_Intersection sa:hasIntersection - Intersection(?x,?y1,y2)

Diffrence sa:sp_Difference sa:hasDifference - Difference(?x,?y1,y2)

Table 5: GeoProcessing built-ins

The execution of every built-in can be elaborated through first running down the

spatial operation and then translating the statements with spatial built-in into standard

SWRL statements. Simplifying the explanations with an example of

feat:Feature(?x) ^ Buffer(?x, b, ?y)

suggesting the use of built-in Buffer on objects within the specialized classes of

feat:Feature with the buffer distance. This statement is elaborated first through

running the SQL statement with the spatial function buffer on each objects of the

class to which it meant to run. That is if the statement is related to buffering walls,

then each instance of class feat:Wall is taken and buffered through the execution of

the SQL statement. The SQL statement with spatial function Buffer would look like:

SELECT Buffer(geom::Feature, bufferDistance)

Here, the geom are the geometries of the objects within specialized classes of

feat:Feature. The result of this execution is then enriched in the knowledge base.

Primarily, the rows in result are geometries which indicate the buffers of each object

with certain buffer distance. The class sa:sp_Buffer is instantiated with objects

representing every row and storing the buffer geometry and the buffer distance within

them. Then after, it is time to translate the statement with the spatial built-in into

standard form of SWRL statement which would be

feat:Feature(?x)^sa:hasBuffer(?x,?y)^sa:sp_Buffer(?y)^

sa:hasBufferDistance(?y,b)

Thus, the statement converts the spatial built-in into feat:Feature

sa:hasSpatialRelations sa:spatialOperation sequence of standard SWRL statement.

The complete list of SQL execution, the result enrichment and statement translation

process is illustrated in table 6.

Integration of Spatial processing and knowledge Processing through the Semantic Web Stack

13

Built-ins SQL Statements Translated Built-ins Built-ins

swrlbspatial:Buffer(?x, b, ?y) SELECT

Buffer(geom::Feature,

bufferDistance)

Result: Populated in

the knowledge base as

individuals of class

sa:sp_Buffer.

sa:hasBuffer(?x,?y) ^

sa:p_Buffer(?y) ^

sa:hasBufferDistance(?y, b)

swrlbspatial:Buffer(?

x, b, ?y)

swrlbspatial:Union(?x,?y1,?y2) Select

Union(geom::Feature1,

geom::Feature2)

Result: Populated in

the knowledge base as

individuals of class

sa:sp_Union.

sa:sp_Union (?x) ^

sa:hasUnion(?x, ?y1) ^

sa:hasUnion(?x, ?y2)

swrlbspatial:Union(?x

,?y1,?y2)

swrlbspatial:Intersection(?x,?y1,?y2) Select

Intersection(geom::Fea

ture1, geom::Feature2)

Result: Populated in

the knowledge base as

individuals of class

sa:sp_Intersection.

sa:sp_Intersection(?x) ^

sa:hasIntersection(?x, ?y1) ^

sa:hasIntersection(?x, ?y2)

swrlbspatial:Intersecti

on(?x,?y1,?y2)

swrlbspatial:Difference(?x,?y1,?y2) Select

Difference(geom::Feat

ure1, geom::Feature2)

Result: Populated in

the knowledge base as

individuals of class

sa:sp_Difference.

sa:sp_Difference(?x) ^

sa:hasDifference(?x, ?y1) ^

sa:hasDifference(?x,?y2)

swrlbspatial:Differen

ce(?x,?y1,?y2)

Table 6: The SQL statements executions of geoprocessing built-ins for the spatial enrichment

The georelationship built-ins rely on object properties and more straight forward.

The built-ins and their linkage to the object properties are presented in table 7.

Functions Class Object Property Built-ins

Disjoint - sa:hasDisjoint Disjoint(?x, ?y)

Touches - sa:hasTouch Touches(?x, ?y)

Within - sa:hasWithin Within(?x, ?y)

Overlaps - sa:hasOverlap Overlaps(?x, ?y)

Table 7: Georelationship Built-ins

However, it is necessary to determine the nature of built-ins from the statement to

determine what spatial operation needs to be performed at database level. These

statements are hence parsed to identify the spatial built-ins from the statement. Then

after, the SQL statement with related spatial operation is executed in the database

level. The results are enriched against their specified object properties in the

14 Ashish Karmacharya1,2, Christophe Cruz2, Frank Boochs2, Franck Marzani1

knowledge base. Now, the statements are ready to get executed. The spatial built-ins

are broken down into feat:Feature sa:hasSpatialRelations feat:Feature sequence by the

translation engine which is now a standard statement so can be executed.

Built-ins SQL Statements Translated Built-ins

swrlbspatial:Disjoint(?x, ?y) SELECT Feature2 FROM spTable

WHERE Disjoint(geom::Feature1,

geom::Feature2)

sa:hasDisjoint(?x, ?y)

swrlbspatial:Touches(?x,

?y)

SELECT Feature2 FROM spTable

WHERE Touch(geom::Feature1,

geom::Feature2)

sa:hasTouch(?x, ?y)

swrlbspatial:Within(?x, ?y) SELECT Feature2 FROM spTable

WHERE Within(geom::Feature1,

geom::Feature2)

sa:hasWithin(?x, ?y)

swrlbspatial:Overlaps(?x,

?y)

SELECT Feature2 FROM spTable

WHERE Overlap(geom::Feature1,

geom::Feature2)

sa:hasOverlaps(?x, ?y)

Table 8: SQL statements executions of georelationship built-ins for the spatial enrichment

It would be helpful to elaborate with an example of built-in

Feat:Feature(?x) ^ feat:Feature(?y)^ Touch(?x,?y)

It is a spatial operation to determine whether an object is touching another.

Generally, the georelationship operations are binary operations and return Boolean

values when is executed alone. However, when executed as a conditional parameter

of the SQL statement, they yield results. That is if the statement

SELECT Touch(geom::Feature1, geom::Feature2)

is executed. It returns either true or false determining whether the geometry of

feature1 touches geometry of feature2. But if the same operation is executed as

SELECT Feature2 FROM spTable WHERE Touch(geom::Feature1,

geom::Feature2)

then it returns all the feature2 which touches feature1. Here spTable is the table

where the geometries of the features are stored in the database system and has been

spatially annotated. The results derived through the execution of the statement with

Touch operation is then enriched against sa:hasTouch object property of the specified

feature. The last step is to break down the Touch(?x, ?y) built-in into feat:Feature

sa:hasSpatialRelations feat:Feature sequence to get the SWRL statement executed.

The breakdown of the spatialbuilt-in Touch(?x, ?y) is given as

feat:Feature(?x) ^ hasTouch(?x, ?y) ^ feat:Feature(?y)

It is a standard SWRL statement which can again be inferred by inference engines.

The complete list of SQL statement execution is illustrated in table 7.

Integration of Spatial processing and knowledge Processing through the Semantic Web Stack

15

5 The wine example

The famous wine ontology is used here to present the principle of spatial ontology

adjustment which allows the computation of spatial data on any existing OWL

ontology. The wine ontology is selected for several reasons. The wine ontology

appears frequently in the literature as an example to define tutorials.

5.1 The Existing Ontology Adjustment

In order to adjust the exiting ontology, two main steps are essential. First, the top

level ontology has to be imported into the existing ontology. In this manner, all the

components of the spatial layer are available for the existing ontology, which are the

annotation and tagging principles of documents and more specifically the spatial

definitions. The second step consists to specialized specific concepts of the exiting

ontology which have possibly spatial signatures. In the wine ontology, wine regions

can be defined as spatial region or polygons in a GIS system. In addition, the wineries

can be geolocalized as points in the same GIS system. Since the existing ontology is

adjusted, the feed of the spatial database regarding the concepts respectively, wine

region and wineries, of the ontology can be undertaken with the help of the individual

already defined in the ontology. For instance, the individual vin:ClosDeVougeot,

which is a French winery localized in Burgundy, is defined by the geolocalized point

47.174835,4.95544 in the WGS84 coordinate system.

The following figure shows the adjusted wine ontology. On the left side, the tree

viewer represents the hierarchy of concept with the top level ontology and

spatial:feature concept with the wine ontology specialized concept vin:Region and

vin:Winery. All the other concept of the wine ontology can by spatially defined. On

the right side, the list of the vin:Winery individuals is given. The individual

vin:ClosDeVougeot appears in this list. This list is composed of 43 individuals and

the list of vin:Region is composed of 36 individuals.

5.2 Spatial Querying process.

This section presents the benefit of spatial querying on spatial data composed of

semantic definition. In the figure 5.16, the individual vin:CoteDOrRegion has a

relationship has:adjacentRegion. This relationship defines a symmetric relationship

between two regions. In the wine ontology, this information is not feed. Currently, it

is no possible to select adjacent regions and regions which are around of 200km to

each other. In the case of a spatial definition in a Spatial GIS, the following queries

are possible. The first query select all the adjacent regions to vin:CoteDOrRegion.

The second query select all the regions which are around of 200km to the region

vin:CoteDOrRegion.

16 Ashish Karmacharya1,2, Christophe Cruz2, Frank Boochs2, Franck Marzani1

SELECT ?adjacent

WHERE

{

 vin:CoteDOrRegion rdfs:type vin:Region

?adjacent rdfs:type vin:Region

SPATIAL_FILTER [touches (vin:CoteDOrRegion,?adjacent)]

}

SELECT ?region

WHERE

{

 vin:CoteDOrRegion rdfs:type vin:Region

?region rdfs:type vin:Region

SPATIAL_FILTER [buffer(?buffer,200000,vin:CoteDOrRegion)]

SPATIAL_FILTER [intersection (?res,?buffer,?region)]

}

The first examples of queries are related to the same kind of individuals, the same

can be undertaken on different kind of individuals. For instance, no spatial

relationships are defined between regions and wineries. With the adjustment of the

ontology and the spatial definition of wine regions and wineries, now the following

query can be undertaken easily. I would like to know all the wineries in a specific

region.

SELECT ?winery

WHERE

{

 vin:CoteDOrRegion rdfs:type vin:Region

?winery rdfs:type vin:Winery

 SPATIAL_FILTER [within (vin:CoteDOrRegion,?winery)]

}

If these relationships were defined in the ontology, then it would be possible to

check the spatial consistency of the knowledge based. The individual

vin:ClosDeVougeot is a winery located in vin:CoteDOrRegion. In the case of the

definition of a symmetric relationship named vin:located between the concept

vin:Region and the concept vin:Winery, the individual vin:ClosDeVougeot should be

linked to the individual vin:CoteDOrRegion with the help of this relationship. The

following query is able to validate this relationship from spatial point of view.

SELECT *

WHERE

{

 vin:CoteDOrRegion rdfs:type vin:Region

vin:ClosDeVougeot rdfs:type vin:Winery

SPATIAL_FILTER [within (vin:CoteDOrRegion, vin:ClosDeVougeot)]

}

If the result is false, but the spatial data define and correct than the ontology is

inconsistent. The overlap between the semantic links and the spatial data permits to

Integration of Spatial processing and knowledge Processing through the Semantic Web Stack

17

check the consistency of the knowledge base in the case that the links were not

generated from the spatial processing.

5.3 Spatial Inference process.

With the help of the SWRL rules, the enrichment of the ontology is now possible. The

following simple example underlines this idea. The winery Clos de Vougeot

vin:ClosDeVougeot which is a located in the region of Côte D’Or

vin:CoteDOrRegion, and this region is actually a region located in France

vin:FrenchRegion. Consequently, the winery Clos de Vougeot vin:ClosDeVougeot is

located in France vin:FrenchRegion. The transitive relationship vin:hasSubRegion

allows the definition of relationships between regions vin:Region.

This first SWRL rule enriches the ontology with vin:hasSubRegion relations

between regions.

vin:Region(?x) ^ vin:Region(?y) ^ spatialswrlb:Within(?y, ?x) 

vin:hasSubRegion(?x, ?y)

This second SWRL rule enriches the ontology with vin:isLocatedInRegion

relations between wineries and regions.

vin:Region(?x) ^ vin:Region(?y) ^ vin:Winery(?z) ^

vin:hasSubRegion(?x, ?y) ^ vin:isLocatedInRegion (?z, ?x)

 vin:isLocatedInRegion (?z, ?y)

This third SWRL rule does at the same time the first and the second rule by using

spatial built-ins.

vin:Region(?x) ^ vin:Region(?y) ^ vin:Winery(?z) ^

swrlbspatial:Within(?y, ?x) ^ swrlbspatial:Within(?z, ?y)

 vin:isLocatedInRegion (?z, ?y) ^ vin:hasSubRegion(?x, ?y)

After the execution of this third rule, new relationships vin:isLocatedInRegion and

vin:hasSubRegion are created in the ontology in order to link . Consequently, the

ontology is enriched with these new relationships.

6 Conclusion

This research attempts to highlight the possibilities to integrate spatial technology in

semantic web framework. It moves beyond the scope of data interoperability while

presenting the concept and makes efforts to utilize the potentiality in other areas of

the Semantic Web technologies. The underlying technologies of knowledge

processing provide to the semantic web the capabilities to process the semantics of the

information through close collaboration with the machine. It makes not only the

understanding of data easier for achieving interoperability among different data

sources, but it also provides valuable knowledge which could enrich the knowledge

18 Ashish Karmacharya1,2, Christophe Cruz2, Frank Boochs2, Franck Marzani1

base in order to equip it with new knowledge. This helps the users understand the data

better. The underlying knowledge technology makes stand out among its

contemporaries.

It is important to have standard terms for every built-in that will be developed to

process spatial knowledge. With other built-ins in the tools standardized by W3C, the

spatial built-ins should also get standardized by the consortium. In addition to W3C,

OGC should also get involved in standardizing the built-ins. An effort in this direction

should be carried out.

7 References

1. Horrocks, I., Pater-Schneider, P. F., McGuinness, D. L., & Welty, C. A. OWL: a Description

Logic Based Ontology Language for the Semantic Web.

2. Klien, E. M.. Semantic Annotation of Geographic Information. Essen: University of

Muenster, thesis report, (2008)

3. Karmacharya, A., Cruz, C., Boochs, F., Marzani, F., Use of Geospatial Analyses for

Semantic Reasoning, Knowledge-Based and Intelligent Information and Engineering

Systems - 14th International Conference, KES 2010, Cardiff, UK, September 8-10, 2010,

Proceedings, Part I. Lecture Notes in Computer Science 6276 Springer 2010, ISBN 978-3-

642-15386-0.

4. OGC, The Open Geospatial Consortium, Inc.®, http://www.opengeospatial.org/

5. A. Karmacharya, C. Cruz, F. Boochs, F. Marzani, ArchaeoKM: Managing Archaeological

data through Archaeological Knowledge, Computer Applications and Quantitative Methods

in Archeology - CAA’2010, Granada (Spain) 6-9 April 2010

6. Bechhofer, S., Harmelen, F. v., Hendler, J., Horrocks, I., McGuinness, D. L., Patel-

Schneider, P. F., et al. (2004, February 10). OWL Web Ontology Language. Retrieved

November 27, 2009, from W3C Recommendation: http://www.w3.org/TR/owl-ref/

7. Berners-Lee, T., Hendler, J., & Lassila, O. (2001, May). The Semantic Web. Scientific

AmericaN, pp. 34-43.

8. Berry, J. K. (1999). GIS Technology In Environmental Management: a Brief History, Trends

and Probable Future. In D. L. Soden, & B. S. Steel (Eds.), Handbook of Global

Environmental Policy and Administration (pp. 49 - 81). Decker, Marcel Inc.

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/k/Karmacharya:Ashish.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Boochs:Frank.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Marzani:Franck.html
http://www.w3.org/TR/owl-ref/

