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Abstract. This paper presents the integration process of spatial technologies 

and Semantic Web technologies and its associated tool. The result of this work 

is a spatial query and rule engine of spatial. To do so, existing ontology with 

spatial elements is adjusted in order to process the spatial knowledge through 

spatial technologies. This paper outlines the methods and the processes of these 

adjustments and how results are returned by our tool. The SWRL and the 

SPARQL language are extended for spatial purpose and the existing OWL 

ontology wine is used as an application example. 
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1 Introduction 

The Semantic Web is a set of technologies complementing the conventional Web 

tools proposed by Sir Tim Berners-Lee. It is seen as the most likely approach to reach 

the goal of semantic interoperability. The Semantic Web is envisaged as an extension 

to the existing web from a linked document repository into the platform where 

information is provided with the semantic allowing better cooperation between people 

and their machines. This is to be achieved by augmenting the existing layout 

information with semantic annotations that add descriptive terms to web content, with 

meaning of such terms being defined in ontologies [1]. Ontologies play crucial role in 

conceptualizing a domain and thus play an important role in enabling Web-based 

knowledge processing, sharing and reuse between applications. 

This research attempts to contribute through including the functionalities of the spatial 

analysis within the Semantic Web framework. Moving beyond the semantic 

information, it has opened the chapter of inclusion of other form of information 

within the Semantic Web framework. It is important in the sense of the development 

of the technology itself. This work should at least provide a certain vision towards the 

direction the technology should take to integrate new forms of data. It discusses the 

direction in terms of spatial integration [3, 5].  
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The Semantic Web stack (e.g. fig. 1.) can be adjusted with a layer of that contains 

spatial information. The research proposes such an arrangement in the stack. A layer 

of spatial data mixing seamlessly with the semantic proposition in the layer Ontology 

through its OWL/RDF based syntax can be envisaged. This layer since uses the 

standard syntax of OWL/RDF can perform spatial queries through SPARQL or infer 

rules through standards as SWRL.  

 

 

Fig. 1. Snapshot of the wine ontology adjusted with spatial component. 

The integration process of the spatial technologies into the Semantic Web stack is 

undertaken by defining a new kinds of FILTERs for SPARQL queries and new kinds 

Built-ins for SWRL rules. These new FILTERS and Built-ins allow to process queries 

and rules with spatial data related to semantic data. The next chapter discusses this 

adjustment in the Semantic Web stack. Section 3 presents the top level ontology 

which enables the use of spatial technologies for any OWL ontology. Section 4 

presents the translation engine which allows the translation of spatial queries and 

rules into standard queries and rules. Section 5 gives the complete process of 

extending an existing ontology in order to take into account the spatial technologies 

by using the famous wine ontology. Section 6 concludes this paper. 

2 Background 

The research project of Klein E. M. [2] in a certain degree follows the pattern of 

existing studies in geo-ontology research domain by focusing on the use of ontology 

for achieving data interoperability. It follows the pattern through defining the 

problems of data discovery in WFS (Web Feature Services) and the semantic 

differences in the data though the features associated to the data have same naming 

conventions. The problems follow even after the data discovery due to the nature of 
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information that data represents is not explicitly stored. The research hence plans a 

mechanism of match making of different SDIs (Spatial Data Infrastructure) through 

the mediation of semantic rich domain ontology designed through the consultation of 

the experts. The Domain Ontology as it terms contains explicit information which 

capture the meanings of real world entities.  

As with the case of this research, the research [2] utilizes the inference capabilities 

of the description logics in the ontology representation language of OWL-DL through 

inference rules. In addition, it uses a simple hydrological example to semantically 

annotate the data through the spatial rules. The SWRL representations of the rule are 

given: 

 
Region(?x) ^ hasSlope(?x, Flat)  Lowland(?x) (1) 

 

Lowland(?x) ^ River(?river) ^ adjacentTo(?x,?river) ^ 

hasAltitude(?x, ?xAlt) ^ hasAltitude(?river, ?riverAlt) ^ 

swrlb:subtract(?diffAlt, ?xAlt, ?riverAlt) ^ 

swrlb:lessThan(4, ?diffAlt)  Floodplain(?x) 

(2) 

 

Region, Lowland, River and Floodplain are the concepts and hasSlope, adjacentTo 

and hasAltitude are the object properties in both feature type’s ontology and domain 

ontology. The idea consists to semantically annotate the concept Floodplain with the 

rules. The first rule represented by equation 1 forms the lowland if the slope of a 

region is flat. There are many constraints of a region being lowland but the research 

uses this rule to demonstrate the usability. A Digital Elevation Model (DEM) is used 

in background which intersects the inferred information and the dataset is annotated 

as lowland. In short the object property hasSlope is intercepted and run through an 

algorithm which combines the DEM dataset to determine the flat slope. Regions 

inferring these flat slops are then annotated as lowland. Extending the rule to equation 

2, it uses object property adjacentTo and built-ins of SWRL to annotate the 

floodplain. The object property adjacentTo again needs to run an algorithm in 

collaboration to the spatial dataset to provide the result. This result again infers with 

the other axioms in the knowledge base to enrich itself. The adjacentTo object 

property utilizes buffer operation to determine the objects close to it. However, the 

operation is hidden from the users and is executed inside the algorithm. This 

execution enriches the knowledge base which could be inferred through standard rule 

of SWRL. The execution of buffer or any spatial operations are carried out through 

the spatial operations of ArcGIS. The semantic annotation through these rules is 

carried out to enrich the Domain Ontology thus negating any short coming of explicit 

semantics in feature type’s ontology. 

The method of inferring the rules first through execution of spatial operations at 

database or application level and then enriching the knowledge base matches with the 

current research work. However, the implications in both researches are different. The 

approach that current research undertakes is to enhance the Semantic Web 

technologies through integrating spatial components into the technology. It differs 

significantly with the former research [2] as it was conducted to use semantic web 

tools and techniques to answer specific GIS problems. Hence, the scale of application 

of Semantic Web techniques is relatively low in the previous research [2]. In other 
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hand, it could be seen that the spatial operations and functions are used implicitly 

through object properties like hasSlope or adjacentTo which are terms of natural 

language. This might give ambiguity to the interpretations of these terms. For 

example the term adjacentTo can have two or more meanings as rightly quoted in the 

thesis report. It can be near to each other either through touching or not touching. So, 

the utilization of spatial operation should be based on these factors. If the adjacent to 

means that the objects are touching then the spatial operation “Touch” could be 

directly used instead of Buffer which is more resource dependent.  

Contrary to [2], this research has taken the works forward to address these 

concerns. Instead of using the commonly used terms, it uses the spatial operations and 

functions terminology standardized by OGC [4]. Standard terms are proposed to 

formulate rules rather than using domain based terms.  

The equation 3 illustrated the adjustment of object property adjacentTo directly 

through SWRL rules through spatial built-ins, which means that the individuals of 

River which are in the Buffer of 50m of a individual of the concept Lowland 

possesses a relationship (ObjectProperty) named adjacentTo that link the Rivers and 

Lowlands. 

  
River(?x)^Lowland(?y)^Buffer(?x, ?y, 50) 

adjacentTo(?x,?y) 

(3) 

 

 

Thus, it could be seen that there is much more flexibility concerning the definition 

of spatial rules through standard spatial built-ins proposed here. Besides the spatial 

built-ins for SWRL, this research adds on spatial built-ins to SPARQL, the query 

language of semantic web tools which is not explicitly researched before. However, 

before using these spatial built-ins in an existing ontology, it is first necessary to 

adjust this one with top level concepts. This integration process allows the linking of 

spatial data to ontologies. This ontology adjustment process is a generic process 

which allows the adjustment of any existing ontology in order to process spatial 

queries and rules on it. 

3 The Top Level Ontology 

This ontology serves as a foundation ontology to which objects can be instantiated 

during the identification process of spatial elements. The axioms are the building 

blocks of ontology and hence these axioms in the context of top level ontology of the 

application should be discussed to provide an overview of the system. The main 

axioms of this top level ontology are:  

 

Semantic - spatial:Feature 

Geometric - shp:Shape 

Geometric Relationship - shp:hasShape 

Spatial Relationship - sa:hasSpatialRelations 

Spatial Database Relationship - doc:hasDBDetails 

 

A shape has a definition in a spatial database. An individual has a shape and has 

spatial relationships with other individuals which have a shape. 
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The class axiom spatial:Feature represents the spatial objects. This class axiom is the 

generalized class of any objects with spatial definition. This class is further 

specialized into classes representing the different objects such as vin:Winery or 

vin:Region for instance regarding the example at the end of this paper. The 

spatial:Feature has to be specialized classes into subclasses. This abstract class cannot 

be instanced but only the individuals which belong to a subclass of spatial:Feature can 

have a spatial attribute.  

The next important class axiom is shp:Shape which stores the local coordinates of 

the objects identified in the excavation site. This generalized class is specialized into 

shp:_3D and shp:_2D sub classes to represent the dimensions of the coordinates. 

Currently, an orthophoto is used to identify objects on a map and hence the 2D 

coordinates are returned of the objects. Semantics of objects in the knowledge base 

are defined through object property feat:objRel. But before that they need to relate to 

their spatial signature that is to their coordinates. This is managed through the 

specialized object property of shp:hasShape. As mentioned the coordinate of the 

object is derived through the digitization are stored as an individual of shp:_2D. This 

instance stores the coordinate of object. Once both the object and its coordinates are 

enriched, shp:hasShape provides a relationship between them. For instance, the 

concept win:Region as a subclass of spatial:Feature has the property shp:hasShape 

which can be a shp:_2D or shp:_3D. 

The annotations to the database are carried out through assigning semantics to the 

annotations as assigning the relevant database and its relevant table in which the data 

is stored. It also provides the connection to the spatial column in which geometries of 

the objects are stored. An object property doc:hasDBDetails under general class 

doc:hasDocumentDetails provides these attributive connections. The three data 

properties to address the semantics of spatial annotation part of connecting to the 

MBRs are doc:dbName, doc:spColumn and doc:tableName, three specialized classes 

of doc:hasDBDetails. 

The spatial functions and operations return geometries on their executions. It is 

hence important to have provision to store these returned geometries in the ontology. 

A generalized class sa:spatialOperation is introduced in the top level ontology. Every 

spatial operation under geoprocessing functions is then adjusted as its subclass. The 

class hierarchy of sa:spatialOperation reveals that the subclasses within it are the 

classes which need to represent returned geometries in some form. 

The four spatial processing functions which are discussed here are Buffer, Union, 

Intersection and Difference. These spatial functions compute new spatial geometries. 

These new geometries are also stored in the spatial database in order to be computed 

by future spatial functions. As a solution, we definition four new classes called 

sa:sp_Buffer, sa:sp_Union, sa:sp_Intersection and sa:sp_Difference which are of 

specialized classes of sa:spatialOperation. The classes here are instantiated when the 

spatial operation of this category is executed. The result of execution is stored within 

the instantiated individual as the data property feat:localPlacement. 

The functions under this category need to take a feature to execute them. The 

feature are objects within class feat:Feature. In order to maintain a relationship 

between the spatial operations representing classes under sa:spatialOperation and 

features under feat:Feature in the ontology an object property sa:hasSpatialRelations 
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is added in the top level ontology. The specialized property relates the individuals 

under sa:spatialOperation and feat:Feature.  For example for every instance in class 

sa:sp_Buffer (sub class ofsa:spatialOperation) be a property sa:hasBuffer (specialized 

object property of sa:hasSpatialRelations) which relates the sa:sp_Buffer class to the 

classes specializing feat:Feature.  There are also four sa:hasSpatialRelations defined 

corresponding to each geoprocessing functions (sa:hasBuffer, sa:hasUnion, 

sa:hasIntersection, sa:hasDifference). Besides theses object properties, data properties 

to correspond the attributive nature of the relationships are also adjusted in the top 

level ontology. A generalized data property sa:hasSpatialAttribute is introduced in the 

top level ontology. Other attributive properties as sa:hasBufferDistance (denotes the 

buffer distance of the buffer) are specialized properties of it. 

 

Funtions Concept ObjectProperty Execution Method 

Buffer sa:sp_Buffer sa:hasBuffer(x,c)            

                            
                          

C is of float value providing the buffer 

distance 

Union sa:sp_Union sa:hasUnion(x,c)           

                              
             

Intersection sa:sp_Intersection sa:hasIntersection(x,c)                    
                                    
                    

Difference sa:sp_Difference sa:hasDifference(x,c)                    
                                    
                    

Intersection sa:sp_Intersection sa:hasIntersection(x,c)                    
                                    
                    

Table 1. The Spatial Processing Functions 

Functions ObjectProperties Characteristics 

Disjoint sa:hasDisjoint(x,y) Symmetric 

Touches sa:hasTouch(x,y) Symmetric 

Within sa:hasWithin(x,y) Transitive 

Overlaps sa:hasOverlaps(x,y)  

Equals sa:hasEqual(x,y) Symmetric, Transitive 

Crosses sa:hasCrosses(x,y) Symmetric 

Intersects sa:hasIntersect(x,y) Symmetric 

Contains sa:hasContain(x,y) Transitive 

Table 2. The Georelationtionship Functions 

These functions demonstrate the spatial relations between objects hence they are 

very straightforward when adjusting in ontology. They can be directly adjusted 

through object properties within the top level ontology. These functions are adjusted 
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as specialized object properties of sa:hasSpatialRelations. The execution pattern of 

every function in this category is executed in similar. The table 2 illustrates the steps 

of every spatial function following OGC spatial operation standards but this research 

thesis utilizes four operations to demonstrate the argument. Those functions are 

Disjoint, Touch, Within and Overlap which are represented through sa:hasDisjoint, 

sa:hasTouch, sa:hasWithin and sa:hasOverlaps subsequently. 

4 The translation engine 

The translation engine allows the computation of spatial SPARQL queries and spatial 

SWRL rules. In both cases, the translation engine interprets the statements in order to 

parse the spatial components. Once the spatial components are parsed, they are 

computed through relevant spatial functions and operations by the translation engine 

through the operations provided at the database level. Then after, the spatial 

statements are translated to standard statements for the executions through their 

proper engine namely the SPARQL engine and the SWRL engine. Concerning the 

inference engine, the enrichment and the population of the ontology regarding the 

results of the inference process is possibly stored in the ontology. 

 

 

Inputs 

Links to spatial 

definitions 

Output 

 
Adjusted 

OWL 
ontology 

Spatial 
SPARQL 
queries   

and  
SWRL  
Rules 

 

Spatial 
DB 

Translation 
engine 

Standard engine 

Regular 
SPARQL 
queries    

and 
SWRL  
Rules 

 

Adjusted, 
Enriched and 

Populated 
OWL 

ontology 

Input Output 

Input 

Fig. 2. The spatial processing of the translation Engine translating SPARQL queries and OWL 

rules 

 

The next sections presents in details the translation engine on more specifically the 

translation process of spatial SPARQL queries to regular queries. The following one 

presents the translation process of spatial SWRL rules to regular SWRL rules. These 

two processes have in common the use of SQL statements to query to the spatial 

database. 
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4.1 Spatial SPARQL Queries 

The FILTER keyword in SPARQL queries is used to define spatial queries. A 

FILTER can be used to compare strings and derive results. The functions like regular 

expression which matches plain literal with no language tag can be used to match the 

lexical forms of other literals by using string comparison function. In addition, 

SPARQL FILTER uses the relational operators as = or > or < for the comparison and 

restrict the result. From this idea, the FILTER principle is extender in order to process 

georelationship functions.  

4.1.1 Geoprocessing FILTER 

The following example shows how to select Building which intersect the buffer of 

200km of a River. In this example, the keyword FILTER is replaced by the keyword 

SPATIAL_FILTER in order to be processed by the translation engine 
 

SELECT  ?name1 ?name2 

WHERE  

{ 

  ?feat1  feat:name ?name1  

  ?feat2  feat:name ?name2 

?feat1  rdfs:type feat:River 

  ?feat2  rdfs:type feat:Building 

 

  SPATIAL_FILTER [buffer (?x, 200 000,?feat1)] 

SPATIAL_FILTER [intersection (?y,?x,?feat2)]  

} 

This process is a selection process, and no inference process is engaged. Once the 

process is ended, the rule is translated to a standard given in the following example. It 

can be seen that the SPATIAL_FILTER is replace by standard RDF triples which. 

Any SPARQL engine is able to run this rule.  
 

SELECT  ?name1 ?name2 

WHERE  

{ 

 ?feat1 feat:name   ?name1  

 ?feat2 feat:name   ?name2 

?feat1 rdfs:type   feat:River 

 ?feat2 rdfs:type   feat:Building 

 

 ?feat1 sa:hasBuffer   ?x 

?x rdfs:type   sa:sp_buffer 

?x sa:hasBufferDistance 200 000 

 

?y  rdfs:type sa:sp_Intersection 

?y sa:hasIntersection ?x 

?y sa:hasIntersection ?feat2 

} 

The table 3 shows the translation of geoprocessing functions contained in 

SPATIAL_FILTER into standard triple component of a SPARQL query. 
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Function Spatial SPARQL Syntax Translation 

Buffer SPATIAL_FILTER [buffer (?x, b, ?y)] 

Result: Populated in the knowledge base as 

individuals of class sa:sp_Buffer. 

?x rel:hasBuffer ?y 

?y rdfs:type sa:sp_buffer 

?y sa:hasBufferDistance    200 000  

Union SPATIAL_FILTER [union (?x, ?y1,?y2)] 

Result: Populated in the knowledge base as 

individuals of class sa:sp_Union. 

?x rdfs:type sa:sp_Union 

?x sa:hasUnion ?y1 

?x sa:hasUnion ?y2 

Intersection SPATIAL_FILTER [intersection (?x, ?y1,?y2)] 

Result: Populated in the knowledge base as 

individuals of class sa:sp_Intersection. 

?x rdfs:type sa:sp_Intersection 

?x sa:hasIntersection ?y1 

?x sa:hasIntersection ?y2 

Difference SPATIAL_FILTER [difference (?x, ?y1,?y2)] 

Result: Populated in the knowledge base as 

individuals of class sa:sp_Difference. 

?x rdfs:type sa:sp_difference 

?x sa:hasDifference ?y1 

?x sa:hasDifference ?y2 

Table 3. The spatial SPARQL syntax and its translation into SARQL syntax. 

4.1.2 Georelationship FILTER 

The following example shows how to select couples of features which are linked 

by a touch spatial relationship. In this example, the keyword FILTER is replaced by 

the keyword SPATIAL_FILTER in order to be processed by the translation engine. 

The name of features couples are selected with this restriction. The first feature has to 

be a feat:River which is of kind of feat:feature, and the second feature has to be a 

feat:Building which is also of kind of feat:feature. The SPATIAL_FILTER selects the 

couples which are touching spatially. 

 
SELECT  ?name1 ?name2 

WHERE  

{ 

 ?feat1  feat:name ?name1  

 ?feat2  feat:name ?name2 

 

?feat1  rdfs:type feat:River 

?feat2  rdfs:type feat:Building 

  

SPATIAL_FILTER [touches (?feat1, ?feat2)]  

} 

 

This process is a selection process, and no inference process is engaged. The aim 

of the translate engine consists to compute the touches spatial process of the Cartesian 

production between the features of the kind feat:River and feat:Building. In the case 

of a positive result, this new link is stored in the ontology between the couple of 

feature with the help of a sa:hasTouches relationship which is of the kind of 

sa:hasSpatialRelations. Once the process is ended, the rule is translated to a standard 
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given in the following example. It can be seen that the SPATIAL_FILTER is replace 

by the triple “feat1 sa:touch ?feat2”. Thus this rule can be processed by a standard 

SPARQL engine. 

 
SELECT  ?name1 ?name2 

WHERE { 

?feat1  feat:name ?name1  

?feat2  feat:name ?name2 

?feat1  rdfs:type feat:River 

 ?feat2  rdfs:type feat:Building  ?feat1 

 sa:touch ?feat2 

} 

 

The table 4 shows the translation of georelationship functions contained in 

SPATIAL_FILTER into standard triple component of a SPARQL query. 

 

Functions ObjectProperties Characteristics 

Disjoint sa:hasDisjoint(x,y) Symmetric 

Touches sa:hasTouch(x,y) Symmetric 

Within sa:hasWithin(x,y) Transitive 

Overlaps sa:hasOverlaps(x,y)  

Equals sa:hasEqual(x,y) Symmetric, Transitive 

Crosses sa:hasCrosses(x,y) Symmetric 

Intersects sa:hasIntersect(x,y) Symmetric 

Contains sa:hasContain(x,y) Transitive 

Table 4. The spatial SPARQL syntax and its translation into SARQL syntax. 

4.1.3 Optimization 

The translation engine is time consuming for large spatial database. In order to 

select the context of execution four options can be given to the SPATIAL_FILTER. 

SPATIAL_FILTER_SELECT: No spatial operation is undertaken; the rule is 

translated without any spatial processing 

SPATIAL_FILTER_PROCESS: Spatial operations are processed only for the 

couples of features which don’t have this relationship. If this relation already exists, 

this one is not computed. 

SPATIAL_FILTER_UPDATE: Spatial operations are processed only for the 

couples of features which have already this relationship in order to update these 

relationships. 

SPATIAL_FILTER_ALL: This is the option by default which consists to compute 

all relationship for the Cartesian product in order to process it if it doesn’t exist or in 

order or update it. 

The following example shows that the selection of features which have the touches 

relationship is done with the option SPATIAL_FILTER_UPDATE. 
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SELECT  ?name1 ?name2 

WHERE 

{ 

  ?feat1  feat:name ?name1  

  ?feat2  feat:name ?name2 

?feat1  rdfs:type feat:River 

  ?feat2  rdfs:type feat:Building 

  

  SPATIAL_FILTER [touches (?feat1, ?feat2)] 

  SPATIAL_FILTER_UPDATE  

} 

 

In addition the spatial filter can be combined by the following manner. It consists 

to insert news filters and to use the same variable. The following example consists to 

select building which contains a chimney in order to see if it touches a river. 

Moreover, no spatial processing is done, only the existing knowledge in the ontology 

is used to process this query. 

 
SELECT  ?name1 ?name2 

WHERE{ 

  ?feat1  feat:name ?name1  

  ?feat2  feat:name ?name2 

?feat1  rdfs:type feat:River 

  ?feat2  rdfs:type feat:Building 

?feat2  rdfs:type feat:Chimney 

  

  SPATIAL_FILTER [touches (?feat1, ?feat2)] 

  SPATIAL_FILTER [touches (?feat2, ?feat3)] 

  SPATIAL_FILTER_ SELECT  
} 

4.2 Inference Rules through SWRL 

In an attempt to define the built-ins for SWRL, a list of eight built-ins was 

proposed during the research work. These eight built-ins reflect four geoprocessing 

functions and four georelationship functions that are discussed previously. The built-

ins reflecting geoprocessing functions are built up in combinations with the spatial 

classes adjusted in the ontology and their relevant object properties. The built-ins for 

georelationship functions are in contrast are just object properties and using these 

object properties in collaboration to the spatial functions in database system. 

4.2.1 Geoprocessing Built-ins 

The first set of built-ins is the built-ins for geoprocessing functions. They are 

functions returning geometries and adjusted in the ontology through feat:Feature 

sa:hasSpatialRelations sa:spatialOperation sequence. This class-property series is 

illustrated in table 5. The initial step consist the built-ins parsed to be processed by the 

translation engines. First the spatial built-ins are identified from the statement and 

parsed. Concurrently, the features on which these built-ins are applied are also 
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identified.Then after, the SQL statementswith relevant spatial function on the 

relevantobjects of the featuresare executed at the database level. The results are then 

enriched in the knowledge base. Once, the knowledge base is enriched, the spatial 

built-ins are broken down into standard feat:Feature sa:hasSpatialRelations 

sa:spatialOperation sequence to generate the standard SWRL statement which is 

executed through standard inference engines. 

 

Functions Class Object Property Data Property Built-ins 

Buffer sa:sp_Buffer sa:hasBuffer sa:hasBufferDistance Buffer(?x, b, ?y) 

Union sa:sp_Union sa:hasUnion - Union(?x,?y1,y2) 

Intersection sa:sp_Intersection sa:hasIntersection - Intersection(?x,?y1,y2) 

Diffrence sa:sp_Difference sa:hasDifference - Difference(?x,?y1,y2) 

Table 5: GeoProcessing built-ins 

The execution of every built-in can be elaborated through first running down the 

spatial operation and then translating the statements with spatial built-in into standard 

SWRL statements. Simplifying the explanations with an example of  

 
feat:Feature(?x) ^ Buffer(?x, b, ?y) 

 

suggesting the use of built-in Buffer on objects within the specialized classes of 

feat:Feature with the buffer distance. This statement is elaborated first through 

running the SQL statement with the spatial function buffer on each objects of the 

class to which it meant to run. That is if the statement is related to buffering walls, 

then each instance of class feat:Wall is taken and buffered through the execution of 

the SQL statement. The SQL statement with spatial function Buffer would look like: 

 
SELECT Buffer(geom::Feature, bufferDistance)  

 

Here, the geom are the geometries of the objects within specialized classes of 

feat:Feature. The result of this execution is then enriched in the knowledge base. 

Primarily, the rows in result are geometries which indicate the buffers of each object 

with certain buffer distance. The class sa:sp_Buffer is instantiated with objects 

representing every row and storing the buffer geometry and the buffer distance within 

them. Then after, it is time to translate the statement with the spatial built-in into 

standard form of SWRL statement which would be  

 
feat:Feature(?x)^sa:hasBuffer(?x,?y)^sa:sp_Buffer(?y)^ 

sa:hasBufferDistance(?y,b) 

 

Thus, the statement converts the spatial built-in into feat:Feature 

sa:hasSpatialRelations sa:spatialOperation sequence of standard SWRL statement. 

The complete list of SQL execution, the result enrichment and statement translation 

process is illustrated in table 6. 
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Built-ins SQL Statements Translated Built-ins Built-ins 

swrlbspatial:Buffer(?x, b, ?y) SELECT 

Buffer(geom::Feature, 

bufferDistance) 

Result: Populated in 

the knowledge base as 

individuals of class 

sa:sp_Buffer. 

sa:hasBuffer(?x,?y) ^ 

sa:p_Buffer(?y) ^ 

sa:hasBufferDistance(?y, b)  

swrlbspatial:Buffer(?

x, b, ?y) 

swrlbspatial:Union(?x,?y1,?y2) Select 

Union(geom::Feature1, 

geom::Feature2) 

Result: Populated in 

the knowledge base as 

individuals of class 

sa:sp_Union. 

sa:sp_Union (?x) ^ 

sa:hasUnion(?x, ?y1) ^  

sa:hasUnion(?x, ?y2)  

swrlbspatial:Union(?x

,?y1,?y2) 

swrlbspatial:Intersection(?x,?y1,?y2) Select 

Intersection(geom::Fea

ture1, geom::Feature2) 

Result: Populated in 

the knowledge base as 

individuals of class 

sa:sp_Intersection. 

sa:sp_Intersection(?x) ^ 

sa:hasIntersection(?x, ?y1)  ^  

sa:hasIntersection(?x, ?y2)  

swrlbspatial:Intersecti

on(?x,?y1,?y2) 

swrlbspatial:Difference(?x,?y1,?y2) Select 

Difference(geom::Feat

ure1, geom::Feature2) 

Result: Populated in 

the knowledge base as 

individuals of class 

sa:sp_Difference. 

sa:sp_Difference(?x) ^ 

sa:hasDifference(?x, ?y1) ^  

sa:hasDifference(?x,?y2) 

swrlbspatial:Differen

ce(?x,?y1,?y2) 

Table 6: The SQL statements executions of geoprocessing built-ins for the spatial enrichment  

The georelationship built-ins rely on object properties and more straight forward. 

The built-ins and their linkage to the object properties are presented in table 7. 

 

Functions Class Object Property Built-ins 

Disjoint - sa:hasDisjoint Disjoint(?x, ?y) 

Touches - sa:hasTouch Touches(?x, ?y) 

Within - sa:hasWithin Within(?x, ?y) 

Overlaps - sa:hasOverlap Overlaps(?x, ?y) 

Table 7: Georelationship Built-ins 

However, it is necessary to determine the nature of built-ins from the statement to 

determine what spatial operation needs to be performed at database level. These 

statements are hence parsed to identify the spatial built-ins from the statement. Then 

after, the SQL statement with related spatial operation is executed in the database 

level. The results are enriched against their specified object properties in the 
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knowledge base. Now, the statements are ready to get executed. The spatial built-ins 

are broken down into feat:Feature sa:hasSpatialRelations feat:Feature sequence by the 

translation engine which is now a standard statement so can be executed.  

 

Built-ins SQL Statements Translated Built-ins 

swrlbspatial:Disjoint(?x, ?y) SELECT Feature2 FROM spTable 

WHERE Disjoint(geom::Feature1, 

geom::Feature2) 

sa:hasDisjoint(?x, ?y)  

swrlbspatial:Touches(?x, 

?y) 

SELECT Feature2 FROM spTable 

WHERE Touch(geom::Feature1, 

geom::Feature2) 

sa:hasTouch(?x, ?y)  

swrlbspatial:Within(?x, ?y) SELECT Feature2 FROM spTable 

WHERE Within(geom::Feature1, 

geom::Feature2) 

sa:hasWithin(?x, ?y) 

swrlbspatial:Overlaps(?x, 

?y) 

SELECT Feature2 FROM spTable 

WHERE Overlap(geom::Feature1, 

geom::Feature2) 

sa:hasOverlaps(?x, ?y)  

Table 8: SQL statements executions of georelationship built-ins for the spatial enrichment 

It would be helpful to elaborate with an example of built-in  

 
Feat:Feature(?x) ^ feat:Feature(?y)^ Touch(?x,?y) 

 

It is a spatial operation to determine whether an object is touching another. 

Generally, the georelationship operations are binary operations and return Boolean 

values when is executed alone. However, when executed as a conditional parameter 

of the SQL statement, they yield results. That is if the statement  

 
SELECT Touch(geom::Feature1, geom::Feature2)  

 

is executed. It returns either true or false determining whether the geometry of 

feature1 touches geometry of feature2. But if the same operation is executed as 

 
SELECT Feature2 FROM spTable WHERE Touch(geom::Feature1, 

geom::Feature2) 

 

then it returns all the feature2 which touches feature1. Here spTable is the table 

where the geometries of the features are stored in the database system and has been 

spatially annotated. The results derived through the execution of the statement with 

Touch operation is then enriched against sa:hasTouch object property of the specified 

feature. The last step is to break down the Touch(?x, ?y) built-in into feat:Feature 

sa:hasSpatialRelations feat:Feature sequence to get the SWRL statement executed. 

The breakdown of the spatialbuilt-in Touch(?x, ?y) is given as 

 
feat:Feature(?x) ^ hasTouch(?x, ?y) ^ feat:Feature(?y) 

 

It is a standard SWRL statement which can again be inferred by inference engines. 

The complete list of SQL statement execution is illustrated in table 7. 
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5 The wine example 

The famous wine ontology is used here to present the principle of spatial ontology 

adjustment which allows the computation of spatial data on any existing OWL 

ontology. The wine ontology is selected for several reasons. The wine ontology 

appears frequently in the literature as an example to define tutorials.  

5.1 The Existing Ontology Adjustment 

In order to adjust the exiting ontology, two main steps are essential. First, the top 

level ontology has to be imported into the existing ontology. In this manner, all the 

components of the spatial layer are available for the existing ontology, which are the 

annotation and tagging principles of documents and more specifically the spatial 

definitions. The second step consists to specialized specific concepts of the exiting 

ontology which have possibly spatial signatures. In the wine ontology, wine regions 

can be defined as spatial region or polygons in a GIS system. In addition, the wineries 

can be geolocalized as points in the same GIS system. Since the existing ontology is 

adjusted, the feed of the spatial database regarding the concepts respectively, wine 

region and wineries, of the ontology can be undertaken with the help of the individual 

already defined in the ontology. For instance, the individual vin:ClosDeVougeot, 

which is a French winery localized in Burgundy, is defined by the geolocalized point 

47.174835,4.95544 in the WGS84 coordinate system. 

The following figure shows the adjusted wine ontology. On the left side, the tree 

viewer represents the hierarchy of concept with the top level ontology and 

spatial:feature concept with the wine ontology specialized concept vin:Region and 

vin:Winery. All the other concept of the wine ontology can by spatially defined. On 

the right side, the list of the vin:Winery individuals is given. The individual 

vin:ClosDeVougeot appears in this list. This list is composed of 43 individuals and 

the list of vin:Region is composed of 36 individuals. 

5.2 Spatial Querying process. 

This section presents the benefit of spatial querying on spatial data composed of 

semantic definition. In the figure 5.16, the individual vin:CoteDOrRegion has a 

relationship has:adjacentRegion. This relationship defines a symmetric relationship 

between two regions. In the wine ontology, this information is not feed. Currently, it 

is no possible to select adjacent regions and regions which are around of 200km to 

each other. In the case of a spatial definition in a Spatial GIS, the following queries 

are possible. The first query select all the adjacent regions to vin:CoteDOrRegion. 

The second query select all the regions which are around of 200km to the region 

vin:CoteDOrRegion.  
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SELECT  ?adjacent 

WHERE  

{ 

 vin:CoteDOrRegion rdfs:type vin:Region 

?adjacent  rdfs:type vin:Region 

 

SPATIAL_FILTER [touches (vin:CoteDOrRegion,?adjacent)] 

} 

 

SELECT  ?region  

WHERE  

{ 

 vin:CoteDOrRegion rdfs:type vin:Region 

?region  rdfs:type vin:Region 

 

SPATIAL_FILTER [buffer(?buffer,200000,vin:CoteDOrRegion)] 

SPATIAL_FILTER [intersection (?res,?buffer,?region)]  

} 

 

The first examples of queries are related to the same kind of individuals, the same 

can be undertaken on different kind of individuals. For instance, no spatial 

relationships are defined between regions and wineries. With the adjustment of the 

ontology and the spatial definition of wine regions and wineries, now the following 

query can be undertaken easily. I would like to know all the wineries in a specific 

region. 

 
SELECT  ?winery 

WHERE  

{ 

 vin:CoteDOrRegion rdfs:type vin:Region 

?winery  rdfs:type vin:Winery 

 

 SPATIAL_FILTER [within (vin:CoteDOrRegion,?winery)] 

} 

 

If these relationships were defined in the ontology, then it would be possible to 

check the spatial consistency of the knowledge based. The individual 

vin:ClosDeVougeot is a winery located in vin:CoteDOrRegion. In the case of the 

definition of a symmetric relationship named vin:located between the concept 

vin:Region and the concept vin:Winery, the individual vin:ClosDeVougeot should be 

linked to the individual vin:CoteDOrRegion with the help of this relationship. The 

following query is able to validate this relationship from spatial point of view.    
 
SELECT  * 

WHERE  

{ 

 vin:CoteDOrRegion rdfs:type vin:Region 

vin:ClosDeVougeot rdfs:type vin:Winery 

 

SPATIAL_FILTER [within (vin:CoteDOrRegion, vin:ClosDeVougeot)] 

} 

 

If the result is false, but the spatial data define and correct than the ontology is 

inconsistent. The overlap between the semantic links and the spatial data permits to 
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check the consistency of the knowledge base in the case that the links were not 

generated from the spatial processing. 

5.3 Spatial Inference process. 

With the help of the SWRL rules, the enrichment of the ontology is now possible. The 

following simple example underlines this idea. The winery Clos de Vougeot 

vin:ClosDeVougeot which is a located in the region of Côte D’Or 

vin:CoteDOrRegion, and this region is actually a region located in France 

vin:FrenchRegion. Consequently, the winery Clos de Vougeot vin:ClosDeVougeot is 

located in France vin:FrenchRegion. The transitive relationship vin:hasSubRegion 

allows the definition of relationships between regions vin:Region. 

This first SWRL rule enriches the ontology with vin:hasSubRegion relations 

between regions. 

 
vin:Region(?x) ^ vin:Region(?y) ^ spatialswrlb:Within(?y, ?x)  

vin:hasSubRegion(?x, ?y) 

 

This second SWRL rule enriches the ontology with vin:isLocatedInRegion 

relations between wineries and regions. 

 
vin:Region(?x) ^ vin:Region(?y) ^ vin:Winery(?z) ^  

vin:hasSubRegion(?x, ?y) ^  vin:isLocatedInRegion (?z, ?x) 

 vin:isLocatedInRegion (?z, ?y) 

 

This third SWRL rule does at the same time the first and the second rule by using 

spatial built-ins. 

 
vin:Region(?x) ^ vin:Region(?y) ^ vin:Winery(?z) ^  

swrlbspatial:Within(?y, ?x) ^ swrlbspatial:Within(?z, ?y) 

 vin:isLocatedInRegion (?z, ?y) ^ vin:hasSubRegion(?x, ?y) 

 

After the execution of this third rule, new relationships vin:isLocatedInRegion and  

vin:hasSubRegion are created in the ontology in order to link . Consequently, the 

ontology is enriched with these new relationships. 

6 Conclusion 

This research attempts to highlight the possibilities to integrate spatial technology in 

semantic web framework. It moves beyond the scope of data interoperability while 

presenting the concept and makes efforts to utilize the potentiality in other areas of 

the Semantic Web technologies. The underlying technologies of knowledge 

processing provide to the semantic web the capabilities to process the semantics of the 

information through close collaboration with the machine. It makes not only the 

understanding of data easier for achieving interoperability among different data 

sources, but it also provides valuable knowledge which could enrich the knowledge 
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base in order to equip it with new knowledge. This helps the users understand the data 

better. The underlying knowledge technology makes stand out among its 

contemporaries.  

It is important to have standard terms for every built-in that will be developed to 

process spatial knowledge. With other built-ins in the tools standardized by W3C, the 

spatial built-ins should also get standardized by the consortium. In addition to W3C, 

OGC should also get involved in standardizing the built-ins. An effort in this direction 

should be carried out. 
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