An explicit transient dynamics framework to solve damage interface problems dedicated to the unmolding tire process
Modélisation d'interface endommageable en dynamique explicite dédiée au démoulage de pneumatiques
Résumé
The tire is a complex product subjected to numerous constraints, and the designer must find a compromise between cost, performance, safety and recyclability. It is composed of a multitude of overlayed layers of different materials, resulting in complex behaviors. Thus, numerical simulation is an obvious choice by allowing the study of a wide range of scenarios. It enables to study the impact of each manufacturing step, and in particular the unmolding tire process, which inspired this thesis. This non-regular problem is associated to contact and damage, described by a cohesive zone model, with fast dynamics phenomena, rarely combined together in simulation. Since the problem is a transient dynamics one, the choice of an explicit time integrator is natural. The proposed idea here is the use of an explicit symplectic scheme providing by definition good energy properties and discrete equations conservation. Based on previous work, the explicit CD-Lagrange scheme is chosen. Thus, the study is focused on the contact interface between a deformable solid and a rigid one. A method for solving interface problems in dynamics is presented. A thermodynamic and explicit resolution framework is then proposed, with local treatment of non-linearities and non-regularities leading to a matrix-free resolution algorithm. Formulations are based on the thermodynamic framework of generalized standard materials and non-regular mechanics. Next, the focus is set on the thermodynamic evolution laws by studying temporal non-locality in order to limit the damage localization on the interface. Delayed-effect models are then introduced. The modular aspect of the proposed resolution is shown, with application of several interface laws and bulk behaviors. Application to large transformation contact problems is also provided. Finally, the feasibility of the approach is demonstrated by its integration into a semi-industrial code, MEF++.
Le pneumatique est un produit complexe soumis à de nombreuses contraintes. Il doit répondre à un compromis entre coût, performance, sécurité et recyclabilité. Il est formé d'une multitude de couches composées de différents matériaux entraînant des comportements complexes à étudier. Ainsi, le choix de la simulation numérique s’impose, permettant notamment l’étude de nombreux scénarios. Elle permet d'étudier l'impact de chaque étape de fabrication, et notamment celle du démoulage, qui a inspiré cette thèse. Ce problème non-régulier est associé à du contact et de l'endommagement, modélisés à l’aide de modèle de zones cohésives, et à de la dynamique rapide, phénomènes rarement combinés ensemble en simulation. Le problème à résoudre étant en dynamique transitoire, le choix d’un intégrateur temporel explicite s’impose. L'idée ici est d'utiliser un schéma explicite symplectique possédant ainsi de bonnes propriétés énergétiques en vérifiant les équations de conservation discrètes. Basé sur des travaux antérieurs, le choix est porté sur le schéma explicite CD-Lagrange. Ainsi, l'étude se concentre sur l'interface de contact entre un solide déformable, et un solide rigide. Une méthode pour résoudre en dynamique des problèmes d’interface est présentée. Un cadre thermodynamique et explicite de résolution est alors proposé, avec un traitement local des non-linéarités et des non-régularités conduisant à un algorithme de résolution "matrix-free". Les formulations sont basées sur le cadre thermodynamique des matériaux standards généralisés et de la mécanique non régulière. Ensuite, l'accent est mis sur les lois d'évolution thermodynamique en étudiant la non-localité temporelle pour limiter la localisation de l’endommagement sur l’interface. Des modèles à effet retard sont alors introduits. L'aspect modulaire de la résolution proposée est montré, avec l’application de plusieurs lois d’interface et de comportement volumique. L'application à des problèmes en grandes transformations est également fournie. Enfin, la faisabilité de l'approche est mise en évidence par son intégration dans un code semi-industriel, MEF++.
Origine | Version validée par le jury (STAR) |
---|